Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biol Int ; 48(4): 440-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115179

RESUMO

Kirsten rat sarcoma virus (KRAS) gene mutation is common in colorectal cancer (CRC) and is often predictive of treatment failure and poor prognosis. To understand the mechanism, we compared the transcriptome of CRC patients with wild-type and mutant KRAS and found that KRAS mutation is associated with the overexpression of a secreted serine protease, kallikrein-related peptidase 10 (KLK10). Moreover, using in vitro and in vivo models, we found that KLK10 overexpression favors the rapid growth and liver metastasis of KRAS mutant CRC and can also impair the efficacy of KRAS inhibitors, leading to drug resistance and poor survival. Further functional assays revealed that the oncogenic role of KLK10 is mediated by protease-activated receptor 1 (PAR1). KLK10 cleaves and activates PAR1, which further activates 3-phosphoinositide-dependent kinase 1 (PDK1)-AKT oncogenic pathway. Notably, suppressing PAR1-PDK1-AKT cascade via KLK10 knockdown can effectively inhibit CRC progression and improve the sensitivity to KRAS inhibitor, providing a promising therapeutic strategy. Taken together, our study showed that KLK10 promotes the progression of KRAS mutant CRC via activating PAR1-PDK1-AKT signaling pathway. These findings expanded our knowledge of CRC development, especially in the setting of KRAS mutation, and also provided novel targets for clinical intervention.


Assuntos
Neoplasias Colorretais , Receptor PAR-1 , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Calicreínas/genética , Calicreínas/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-37990897

RESUMO

BACKGROUND AND OBJECTIVE: Preliminary experiments have revealed the abnormally high expression level of adropin in pancreatic ductal adenocarcinoma (PDA). This study investigated the role of adropin in the progression of PDA. METHODS: The paraffin-embedded samples of 20 patients with PDA were obtained from the hospital biobank, and immunohistochemistry was used to evaluate adropin expression. PDA cell lines were cultured and treated with recombinant adropin or adropin knockdown. Cell behavior was assessed, and the expression of phospho-vascular endothelial growth factor receptor (p-VEGFR2) and other related proteins was detected. The cell-derived xenograft (CDX) of PDA was established, and the effects of adropin or adropin knockdown on tumor growth were observed. RESULTS: The PDA cancer tissues exhibited elevated adropin protein expression compared with the paracancerous tissues, and the expression was positively correlated with carbohydrate antigen 19-9 levels in patients. Adropin significantly promoted the proliferation and migration of PDA cells and upregulated the expression of p-VEGFR2, Ki67, cyclin D1, and matrix metalloprotein 2 (MMP2). After the knockdown of adropin expression or blockade of VEGFR2, the above effects of adropin were significantly reversed. Adropin supplementation significantly accelerated tumor growth in PDA CDX; upregulated the expression of p-VEGFR2, Ki67, cyclin D1, and MMP2; and promoted angiogenesis in tumor tissue microenvironment. However, CDX inoculated with adropin knockdown cells produced the opposite results. CONCLUSION: Adropin overexpression in PDA promotes cancer cell proliferation and angiogenesis in tumor microenvironment by continuously activating VEGFR2 signaling, thereby creating conditions for tumor progression. Thus, targeting adropin may be an effective anti-PDA strategy.

3.
Am J Transl Res ; 14(11): 8129-8145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505286

RESUMO

OBJECTIVES: The M2 polarization of tumor-associated macrophages (TAMs) facilitates the growth, invasion and metastasis of tumor cells. Here, we investigated the role of miR-216b in the M2 polarization of TAMs in colorectal cancer (CRC). METHODS: The expression of genes were examined by quantitative real-time polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay and immunohistochemistry. The relationship between miR-216b and CPEB4 was verified through dual luciferase reporter assays. The proliferation, migration and invasiveness of CRC and Raw264.7 cells were assessed through cell counting kit-8 and Transwell assays. Flow cytometry was used to quantify the percentage of F4/80+/CD206+RAW264.7 cells. The metastasis of tumor cells in liver and lung tissues was evaluated by establishing a mouse xenograft tumor model and hematoxylin-eosin staining. RESULTS: Downregulation of miR-216b enhanced the M2 polarization of TAMs. CPEB4 was identified as a target of miR-216b. CPEB4 knockdown suppressed CRC cell proliferation, migration and invasion, which were rescued by miR-216b inhibition. It was confirmed that M2 macrophage infiltration in CRC was positively correlated with the expression levels of CPEB4 and IL-10. CPEB4 knockdown impaired the M2 polarization of Raw264.7 cells and reduced IL-10 expression. miR-216b overexpression suppressed tumor growth, metastasis and expressions of CPEB4, CD206 and IL-10 in CRC xenograft models. CONCLUSIONS: miR-216b targets CPEB4 to impair the IL-10-mediated M2 polarization of TAMs, thereby inhibiting CRC development.

4.
Dig Dis Sci ; 67(8): 3742-3752, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34427817

RESUMO

BACKGROUND: Forkhead box protein C1 (FOXC1) is a transcription factor overexpressed in multiple cancers and is associated with poor prognosis. However, the function of FOXC1 in gastric cancer remains largely unknown. AIM: This study aims to explore the role of FOXC1 in promoting gastric cancer metastasis. METHODS: FOXC1 expression in gastric cancer patients was measured using real-time PCR and western blot. The association of FOXC1 with patient survival was assessed using public dataset. Gastric cancer cells with FOXC1 overexpression or knockdown were established. Cell metastatic ability was assessed by the expression of epithelial-mesenchymal transition (EMT)-related genes (E-cadherin, N-cadherin, vimentin) and matrix metalloproteinase-9 (MMP-9) as well as by migration and invasion assays. Chromatin immunoprecipitation was used to evaluate the interaction between FOXC1 and ß-catenin. The in vivo effect of FOXC1 and ß-catenin was assessed in metastatic animal models. RESULTS: FOXC1 is overexpressed in gastric cancer and is associated with disease progression and poor patient survival. FOXC1 overexpression leads to the down-regulation of epithelial marker (E-cadherin) and the up-regulation of mesenchymal makers (N-cadherin, vimentin) and MMP-9, consistent with enhanced EMT. Moreover, cell migration and invasion are also activated, indicating increased metastatic ability. Notably, FOXC1 binds to the promoter region of ß-catenin and transactivates ß-catenin expression, which is responsible for the activation of EMT and metastasis in cells overexpressing FOXC1, while ß-catenin knockdown can suppress the metastasis-induced by FOXC1. CONCLUSIONS: FOXC1 promotes gastric cancer metastasis by activating Wnt/ß-catenin signaling pathway, which may serve as a promising therapeutic target for gastric cancer treatment.


Assuntos
Neoplasias Gástricas , Via de Sinalização Wnt , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Gástricas/patologia , Vimentina/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...