Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Genomics ; 51(6): 630-641, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38253235

RESUMO

Clathrin-mediated endocytosis has been implicated in various physiological processes, including nutrient uptake, signal transduction, synaptic vesicle recycling, maintenance of cell polarity, and antigen presentation. Despite prior knowledge of its importance as a key regulator in promoting clathrin-mediated endocytosis, the physiological function of α- and γ-adaptin binding protein (aagab) remains elusive. In this study, we investigate the biological function of aagab during zebrafish development. We establish a loss-of-function mutant of aagab in zebrafish, revealing impaired swimming and early larval mortality. Given the high expression level of aagab in the brain, we probe into its physiological role in the nervous system. aagab mutants display subdued calcium responses and local field potential in the optic tectal neurons, aligning with reduced neurotransmitter release (e.g., norepinephrine) in the tectal neuropil of aagab mutants. Overexpressing aagab mRNA or nervous stimulant treatment in mutants restores neurotransmitter release, calcium responses, swimming ability, and survival. Furthermore, our observations show delayed release of FM 1-43 in AAGAB knockdown differentiated neuroblastoma cells, pointing towards a probable link to defective clathrin-mediated synaptic vesicle recycling. In conclusion, our study underscores the significance of Aagab in neurobiology and suggests its potential impacts on neurological disorders.


Assuntos
Larva , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Endocitose/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/crescimento & desenvolvimento , Larva/genética , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
2.
Cell Death Discov ; 9(1): 430, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036512

RESUMO

ISGylation is a well-established antiviral mechanism, but its specific function in immune and tissue homeostasis regulation remains elusive. Here, we reveal that the RNA-binding protein RBM47 undergoes phosphorylation-dependent ISGylation at lysine 329 to regulate immune activation and maintain lung homeostasis. K329R knockin (KI) mice with defective RBM47-ISGylation display heightened susceptibility to LPS-induced acute lung injury and lung tumorigenesis, accompanied with multifaceted immunosuppression characterized by elevated pro-inflammatory factors, reduced IFNs/related chemokines, increased myeloid-derived suppressor cells, and impaired tertiary lymphoid structures. Mechanistically, RBM47-ISGylation regulation of the expression of TSC22D3 mRNA, a glucocorticoid-inducible transcription factor, partially accounts for the effects of RBM47-ISGylation deficiency due to its broad immunosuppressive activity. We further demonstrate the direct inhibitory effect of RBM47-ISGylation on TSC22D3 expression in human cells using a nanobody-targeted E3 ligase to induce site-specific ISGylation. Furthermore, epinephrine-induced S309 phosphorylation primes RBM47-ISGylation, with epinephrine treatment exacerbating dysregulated cytokine expression and ALI induction in K329R KI mice. Our findings provide mechanistic insights into the dynamic regulation of RBM47-ISGylation in supporting immune activation and maintaining lung homeostasis.

3.
Light Sci Appl ; 11(1): 47, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35228527

RESUMO

Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.

4.
Nat Cell Biol ; 23(7): 782-795, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183801

RESUMO

Endosome fission is essential for cargo sorting and targeting in the endosomal system. However, whether organelles other than the endoplasmic reticulum (ER) participate in endosome fission through membrane contacts is unknown. Here, we characterize a Golgi-derived vesicle, the SEC14L2 compartment, that plays a unique role in facilitating endosome fission through ternary contacts with endosomes and the ER. Localized to the ER-mediated endosome fission site, the phosphatidylinositol transfer protein SEC14L2 promotes phosphatidylinositol 4-phosphate (PtdIns4P) to phosphatidylinositol 3-phosphate (PtdIns3P) conversion before endosome fission. In the absence of SEC14L2, endosome fission is attenuated and more enlarged endosomes arise due to endosomal accumulation of PtdIns4P and reduction in PtdIns3P. Collectively, our data suggest roles of the Golgi network in ER-associated endosome fission and a mechanism involving ER-endosome contacts in the regulation of endosomal phosphoinositide conversion.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Retículo Endoplasmático/genética , Endossomos/genética , Complexo de Golgi/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Proteínas de Peixe-Zebra/genética
5.
Adv Exp Med Biol ; 3233: 1-22, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34053020

RESUMO

Optical imaging, which possesses noninvasive and high-resolution features for biomedical imaging, has been used to study various biological samples, from in vitro cells, ex vivo tissue, to in vivo imaging of living organism. Furthermore, optical imaging also covers a very wide scope of spatial scale, from submicron sized organelles to macro-scale live biological samples, enabling it a powerful tool for biomedical studies. Before introducing these superior optical imaging methods to researchers, first of all, it is necessary to present the basic concept of light-matter interactions such as absorption, scattering, and fluorescence, which can be used as the imaging contrast and also affect the imaging quality. And then the working mechanism of various imaging modalities including fluorescence microscopy, confocal microscopy, multiphoton microscopy, super-resolution microscopy, optical coherence tomography (OCT), diffuse optical tomography (DOT), etc. will be presented. Meanwhile, the main features and typical bioimaging applications of these optical imaging technologies are discussed. Finally, the perspective of future optical imaging methods is presented. The aim of this chapter is to introduce the background and principle of optical imaging for grasping the mechanism of advanced optical imaging modalities introduced in the following chapters.


Assuntos
Tomografia de Coerência Óptica , Microscopia Confocal
6.
Biomed Opt Express ; 12(4): 1846-1857, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996202

RESUMO

Cancer is the second leading cause of mortality globally, while cancer metastasis, which accounts for about 90% of cancer-related mortality, presents an extremely poor prognosis. Thus, various nanomedicines were designed and synthesized for cancer treatment, but nanomaterials could lead to endothelial leakiness and consequently facilitate intravasation and extravasation of cancer cells to form circulating tumor cells (CTCs), which were regarded as the potential metastatic seeds, possibly accelerating cancer metastasis. Neither possible metastatic sites were observed nor rare CTCs could be measured using common methods at the early stage of cancer metastasis, it is urgent to explore new technology to dynamically monitor nanomedicine promoted cancer metastasis with high sensitivity, which would be beneficial for cancer treatment as well as design and synthesis of nanomedicine. Herein, a novel optical biopsy tool i.e. in vivo flow cytometry (IVFC) was constructed to noninvasively and real-time monitor CTCs of tumor-bearing mice treated with various concentrations of Au nanoparticles. The in vivo experimental results demonstrated the promoted CTCs were Au nanoparticles dose-dependent consistent with the in vitro results, which showed Au nanoparticles induced dose-dependent gaps in the blood vessel endothelial walls to accelerate CTCs formation, making IVFC a promising biopsy tool in fundamental, pre-clinical and clinical investigation of nanomedicine and cancer metastasis.

7.
Anal Chim Acta ; 1154: 338309, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736794

RESUMO

Cancer severely threatens human health currently, promoting the rapid development of cancer treatment strategies. In addition to cancer therapy, assessment of cancer prognosis, which can evaluate the success with treatment and chances of recovery as well as assist to make subsequent therapeutic schedule, is also remarkably indispensable and important. Conventional technologies can't provide rapid and highly-sensitive assessment of cancer prognosis at cytological level. Herein, an effective nitrogen doped carbon dots with intrinsic nucleolus-targeting capability and high fluorescence quantum yield are synthesized, characterized and employed for fluorescence imaging of nucleolus, which is closely related to the biological alteration of cancer cell. The cancer prognosis thus can be accurately (limit of detection: 50 nM) and rapidly (5 min) assessed at subcellular organelle level from nucleolar characteristics, which are visualized and analyzed by the captured fluorescence images. Outstanding assessment performance endows the proposed technology with great potential for future clinical research.


Assuntos
Neoplasias , Pontos Quânticos , Carbono , Fluorescência , Corantes Fluorescentes , Humanos , Neoplasias/diagnóstico por imagem , Nitrogênio , Imagem Óptica , Prognóstico , Espectrometria de Fluorescência
8.
Nanoscale Adv ; 3(8): 2325-2333, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133762

RESUMO

Photodynamic therapy (PDT), a clinically approved cancer treatment strategy, features non-invasiveness, few side-effects, high spatial resolution, etc. The advancement of PDT has been significantly restricted by the penetration depth of the excitation light. Herein, an effective fluorogen, TBD, with aggregation-induced emission characteristics (AIEgen) and high reactive-oxygen-species (ROS) generation efficiency was reported and integrated with a near infrared (NIR) light excitable upconversion nanoparticle (UCNP) to construct NIR light excitable UCNP@TBD nanocomposites. The formed nanocomposite has excellent photostability, good biocompatibility, and efficient ROS generation under NIR light excitation via Förster resonance energy transfer (FRET), enabling NIR light excited PDT. Moreover, the proposed NIR light excited PDT can break the impasse between the penetration depth and excitation volume in conventional PDT, effectively improving the anticancer therapeutic outcome. In vitro cancer cell ablation and in vivo tumor growth inhibition validated that the proposed UCNP@TBD nanocomposite is a promising NIR light excitable PDT agent with great potential for future translational research.

9.
Adv Healthc Mater ; 9(16): e2000607, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32548916

RESUMO

Photodynamic therapy (PDT), which utilizes light excited photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. In order to further enhance PDT effect, PSs are functionalized to target specific sub-cellular organelles, but most PSs cannot target nucleolus, which is demonstrated as a more efficient and ideal site for cancer treatment. Here, an effective carbon dots (C-dots) photosensitizer with intrinsic nucleolus-targeting capability, for the first time, is synthesized, characterized, and employed for in vitro and in vivo image-guided photodynamic anticancer therapy with enhanced treatment performance at a low dose of PS and light irradiation. The C-dots possess high ROS generation efficiency and fluorescence quantum yield, excellent in vitro and in vivo biocompatibility, and rapid renal clearance, endowing it with a great potential for future translational research.


Assuntos
Carbono , Fotoquimioterapia , Fluorescência , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio
10.
Nat Commun ; 10(1): 1606, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962435

RESUMO

Vascular endothelial growth factor (VEGF) regulates vasculogenesis by using its tyrosine kinase receptors. However, little is known about whether Sec14-like phosphatidylinositol transfer proteins (PTP) are involved in this process. Here, we show that zebrafish sec14l3, one of the family members, specifically participates in artery and vein formation via regulating angioblasts and subsequent venous progenitors' migration during vasculogenesis. Vascular defects caused by sec14l3 depletion are partially rescued by restoration of VEGFR2 signaling at the receptor or downstream effector level. Biochemical analyses show that Sec14l3/SEC14L2 physically bind to VEGFR2 and prevent it from dephosphorylation specifically at the Y1175 site by peri-membrane tyrosine phosphatase PTP1B, therefore potentiating VEGFR2 signaling activation. Meanwhile, Sec14l3 and SEC14L2 interact with RAB5A/4A and facilitate the formation of their GTP-bound states, which might be critical for VEGFR2 endocytic trafficking. Thus, we conclude that Sec14l3 controls vasculogenesis in zebrafish via the regulation of VEGFR2 activation.


Assuntos
Neovascularização Fisiológica/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/metabolismo , Embrião não Mamífero , Desenvolvimento Embrionário/fisiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipoproteínas/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
11.
J Genet Genomics ; 45(8): 443-453, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174136

RESUMO

Prpf4 (pre-mRNA processing factor 4), a key component of spliceosome, plays critical roles in pre-mRNA splicing and its mutations result in retinitis pigmentosa due to photoreceptor defects. In this study, we characterized a zebrafish prpf4t243 mutant harboring a Tol2 transposon-based gene trap cassette in the third intron of the prpf4 gene. Cells in the brain and spinal cord gradually undergo p53-dependent apoptosis after 28 hpf in prpf4t243 mutants, suggesting that a widespread function of prpf4 in neural cell survival. In addition, prpf4 is essential for survival of posterior lateral line primordial (pLLP) cells. prpf4 deficiency perturbs Fgf, Wnt/ß-catenin and chemokine signaling pathways and impairs pLLP migration. RNA-Seq analysis suggests that prpf4 deficiency may impair spliceosome assembly, leading to compensatory upregulation of core spliceosomal genes and alteration of pre-mRNA splicing. Taken together, our studies uncover an essential role of prpf4 in pre-mRNA splicing, cell survival and pLLP migration.


Assuntos
Sistema da Linha Lateral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Apoptose , Encéfalo/citologia , Encéfalo/metabolismo , Movimento Celular , Sobrevivência Celular , Regulação da Expressão Gênica no Desenvolvimento , Íntrons , Sistema da Linha Lateral/citologia , Sistema da Linha Lateral/embriologia , Splicing de RNA , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Spliceossomos/genética , Spliceossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
BMC Plant Biol ; 17(1): 109, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645264

RESUMO

BACKGROUND: Invertases (INVs) are key enzymes regulating sucrose metabolism and are here revealed to be involved in responses to environmental stress in plants. To date, individual members of the invertase gene family and their expression patterns are unknown in sugarcane due to its complex genome despite their significance in sucrose metabolism. RESULTS: In this study, based on comparative genomics, eleven cDNA and twelve DNA sequences belonging to 14 non-redundant members of the invertase gene family were successfully cloned from sugarcane. A comprehensive analysis of the invertase gene family was carried out, including gene structures, phylogenetic relationships, functional domains, conserved motifs of proteins. The results revealed that the 14 invertase members from sugarcane could be clustered into three subfamilies, including 6 neutral/alkaline invertases (ShN/AINVs), and 8 acid invertases (ShAINVs). Faster divergence occurred in acid INVs than in neutral/alkaline INVs after the split of sugarcane and sorghum. At least a one-time gene duplication event was observed to have occurred in the four groups of acid INVs, whereas ShN/AINV1 and ShN/AINV2 in the ß8 lineage were revealed to be the most recently duplicated genes among their paralogous genes in the ß group of N/AINVs. Furthermore, comprehensive expression analysis of these genes was performed in sugarcane seedlings subjected to five abiotic stresses (drought, low temperature, glucose, fructose, and sucrose) using Quantitative Real-time PCR. The results suggested a functional divergence of INVs and their potential role in response to the five different treatments. Enzymatic activity in sugarcane seedlings was detected under five abiotic stresses treatments, and showed that the activities of all INVs were significantly inhibited in response to five different abiotic stresses, and that the neutral/alkaline INVs played a more prominent role in abiotic stresses than the acid INVs. CONCLUSIONS: In this study, we determined the INV gene family members of sugarcane by PCR cloning using sorghum as a reference, providing the first study of the INV gene family in sugarcane. Combining existing INV gene data from 7 plants with a comparative approach including a series of comprehensive analyses to isolate and identify INV gene family members proved to be highly successful. Moreover, the expression levels of INV genes and the variation of enzymatic activities associated with drought, low temperature, glucose, fructose, and sucrose are reported in sugarcane for the first time. The results offered useful foundation and framework for future research for understanding the physiological roles of INVs for sucrose accumulation in sugarcane.


Assuntos
Saccharum/genética , beta-Frutofuranosidase/genética , Motivos de Aminoácidos , Temperatura Baixa , Secas , Variação Genética , Genoma de Planta , Família Multigênica , Filogenia , Saccharum/enzimologia , Análise de Sequência de DNA , Sorghum/genética , Estresse Fisiológico
13.
Mol Biosyst ; 12(3): 868-78, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26761525

RESUMO

Structure-based prediction of sites of metabolism (SOMs) mediated by cytochrome P450s (CYPs) is of great interest in drug discovery and development. However, protein flexibility and active site water molecules remain a challenge for accurate SOM prediction. CYP2C19 is one of the major drug-metabolizing enzymes and has attracted considerable attention because of its polymorphism and capability of metabolizing ∼7% clinically used drugs. In this study, we systematically evaluated the effects of protein flexibility and active site water molecules on SOM prediction for CYP2C19 substrates. Multiple conformational sampling techniques including GOLD flexible residues sampling, molecular dynamics (MD) and tCONCOORD side-chain sampling were adopted for assessing the influence of protein flexibility on SOM prediction. The prediction accuracy could be significantly improved when protein flexibility was considered using the tCONCOORD sampling method, which indicated that the side-chain conformation was important for accurate prediction. However, the inclusion of the crystallographic or MD-derived water molecule(s) does not necessarily improve the prediction accuracy. Finally, a combination of docking results with SMARTCyp was found to be able to increase the SOM prediction accuracy.


Assuntos
Domínio Catalítico , Citocromo P-450 CYP2C19/química , Citocromo P-450 CYP2C19/metabolismo , Água/química , Cristalografia por Raios X , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Especificidade por Substrato
14.
Yao Xue Xue Bao ; 50(6): 658-67, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26521434

RESUMO

Estrogen receptors (ERs) are members of nuclear receptors and related to several diseases such as cancer, inflammation and osteoporosis. ERs have two forms, ERα and ERß, which have different functions and organism distributions. Compounds selectively targeting ERß can regulate important physiological functions and avoid the side effects caused by targeting ERα. Therefore, selective ERß ligands have received considerable research interest in recent years. In this article, different kinds of selective ERß ligands were summarized and their structure-activity relationships were also analyzed.


Assuntos
Receptor beta de Estrogênio/química , Ligantes , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...