Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 177-190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401439

RESUMO

The treatment of wastewater containing hypophosphite [P(I)] and phosphite [P(III)] is challenged by limitations of traditional Fenton oxidation such as low efficiency, secondary pollution and high costs. This study introduced a facile solvent-thermal method to synthesize Cu-Co3O4 nanoparticles uniformly loaded on graphene (Cu-Co3O4/U-rGO) through the reduction and coordination effects of urushiol (U). As prepared Cu-Co3O4/U-rGO exhibited excellent activity in activating peroxymonosulfate (PMS) for the oxidation of P(I)/P(III) to phosphate [P(V)] (0.229 min-1), along with high stability and reusability (91.5 % after 6 cycles), low metal leaching rate (Co: 0.2 mg/L, Cu: 0.05 mg/L), insensitivity to common anions in water and a wide pH range (3-11). The activation mechanism involved the synergistic effects from both urushiol and graphene, which promoted redox of Cu+/Cu2+ and Co2+/Co3+ and induced abundant oxygen vacancies for PMS activation to produce singlet oxygen. Furthermore, the Cu-Co3O4/U-rGO/PMS was also excellent in the oxidative removal of organic phosphorus. This study is expected to advance strategies for the treatment of P(I)/P(III)-rich wastewater and provide new insights for the development of low-cost, highly efficient heterogeneous catalysts with abundant oxygen vacancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...