Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(6): 3523-3532, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897772

RESUMO

In this study, the effects of four types of amendments on effective Cd and Cd content in different parts of prickly ash soil and soil enzyme activity were studied, which provided scientific basis for acidification improvement of purple soil and heavy metal pollution control. A field experiment was conducted. Six treatments were set up:no fertilizer (CK), only chemical fertilizer (F), lime + chemical fertilizer (SF), organic fertilizer + chemical fertilizer (OM), biochar + chemical fertilizer (BF), and vinasse biomass ash + chemical fertilizer (JZ). Soil pH; available Cd (DTPA-Cd); Cd content in branches, leaves, shells, and seeds of Zanthoxylum; as well as the activities of catalase (S-CAT), acid phosphatase (S-ACP), and urease (S-UE) in different treatments were studied, and their relationships were clarified. The results showed following:① The two treatments of vinasse biomass ash + chemical fertilizer and lime + chemical fertilizer significantly increased soil pH (P < 0.05) to 3.39 and 2.25 units higher than that in the control, respectively. Compared with that in the control treatment, the content of available Cd in soil under vinasse biomass ash + chemical fertilizer and lime + chemical fertilizer treatment decreased by 28.91 % and 20.90 %, respectively. ② The contents of Cd in leaves, shells, and seeds of Zanthoxylum were decreased by 31.33 %, 30.24 %, and 34.01 %, respectively. The Cd enrichment ability of different parts of Zanthoxylum was different, with the specific performances being leaves > branches > seeds > shells. Compared with that of the control, the enrichment coefficient of each part of Zanthoxylum treated with vinasse biomass ash + chemical fertilizer decreased significantly(P < 0.05)by 27.54 %-40.0 %. ③ The changes in catalase and urease activities in soil treated with amendments were similar. Compared with those in the control group, the above two enzyme activities were significantly increased by 191.26 % and 199.50 %, respectively, whereas the acid phosphatase activities were decreased by 16.45 %. Correlation analysis showed that soil available Cd content was significantly negatively correlated with soil pH value(P < 0.01), S-CAT and S-UE enzyme activities were significantly positively correlated with soil pH(P < 0.01), and the soil available Cd content was significantly negatively correlated (P < 0.01); the S-ACP enzyme showed the complete opposite trends. The application of lime and vinasse biomass ash to acidic purple soil had the most significant effect on neutralizing soil acidity. It was an effective measure to improve acidic purple soil and prevent heavy metal pollution by reducing the effective Cd content in soil and improving the soil environment while inhibiting the absorption and transfer of Cd in various parts of Zanthoxylum.


Assuntos
Cádmio , Fertilizantes , Poluentes do Solo , Solo , Poluentes do Solo/metabolismo , Cádmio/metabolismo , Solo/química , Urease/metabolismo , Zanthoxylum/química , Zanthoxylum/metabolismo , Fosfatase Ácida/metabolismo , Catalase/metabolismo , Disponibilidade Biológica , Óxidos/química , Compostos de Cálcio/química , Carvão Vegetal/química
2.
Plant Commun ; : 100985, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859587

RESUMO

Chromatin interactions create spatial proximity between distal regulatory elements and target genes in the genome, which has an important impact on gene expression, transcriptional regulation, and phenotypic traits. To date, several methods have been developed for predicting gene expression. However, existing methods do not take into consideration the impact of chromatin interactions on target gene expression, thus potentially reduces the accuracy of gene expression prediction and mining of important regulatory elements. In this study, a highly accurate deep learning-based gene expression prediction model (DeepCBA) based on maize chromatin interaction data was developed. Compared with existing models, DeepCBA exhibits higher accuracy in expression classification and expression value prediction. The average Pearson correlation coefficients (PCC) for predicting gene expression using gene promoter proximal interactions, proximal-distal interactions, and proximal and distal interactions were 0.818, 0.625, and 0.929, respectively, representing an increase of 0.357, 0.16, and 0.469 over the PCC of traditional methods that only use gene proximal sequences. Some important motifs were identified through DeepCBA and were found to be enriched in open chromatin regions and expression quantitative trait loci (eQTL) and have the molecular characteristic of tissue specificity. Importantly, the experimental results of maize flowering-related gene ZmRap2.7 and tillering-related gene ZmTb1 demonstrate the feasibility of DeepCBA in exploring regulatory elements that affect gene expression. Moreover, the promoter editing and verification of two reported genes (ZmCLE7, ZmVTE4) demonstrated new insights of DeepCBA in precise designing of gene expression and even future intelligent breeding. DeepCBA is available at http://www.deepcba.com/ or http://124.220.197.196/.

3.
Huan Jing Ke Xue ; 45(3): 1655-1664, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471877

RESUMO

The aim of this study was to explore the effects of four amendments on soil fertility and labile carbon fraction characteristics of acid purple soil, so as to provide scientific basis for nutrient management and carbon storage stability in purple soil. Field experiments were carried out, and six treatments were set up:no fertilization (CK), only chemical fertilizer (F), lime + chemical fertilizer (SF), organic fertilizer + chemical fertilizer (OM), biochar + chemical fertilizer (BF), and vinasse biomass ash + chemical fertilizer (JZ). The contents of soil organic matter, pH, available nutrients, soil integrated fertility index (IFI), dissolved organic carbon (DOC), microbial biomass carbon (MBC), particulate organic carbon (POC), their effective rates, and soil carbon pool management index (CPMI) under different treatments were studied to clarify their relationships. The results showed that:① the application of amendments significantly increased soil pH and the contents of organic matter, alkali-hydrolyzed nitrogen, available phosphorus, and available potassium (P<0.05). The OM and JZ treatments had the most significant increase in soil comprehensive fertility index (P<0.05), with increases of 1.96 and 0.77 and 170.43% and 66.96%, respectively. ② Compared with those in the control treatment, the contents of POC, MBC, and DOC in JZ and OM increased by 110.30% and 84.81%, 61.08% and 46.56%, and 195.87% and 141.67%, respectively. The application of amendments significantly increased the soil carbon pool index (CPI) and CMPI (P<0.05), in which the OM treatment showed the most significant increase, with soil CPI and CMPI values increasing by 107.34% and 90.75% compared with those of the control, respectively. ③ Soil organic carbon and its labile fractions were positively correlated with IFI (P<0.05), and redundancy analysis showed that there were significant differences among different treatments. The interpretation rates of soil IFI, pH, and available potassium to organic carbon and its components reached significant levels, and the order of interpretation rates was IFI(74.6%)>pH (11.7%)>AK(6.5%). The application of vinasse biomass ash and organic fertilizer to acid purple soil had the most significant effect on improving soil fertility and soil quality and was conducive to promoting the accumulation and activation of soil carbon fractions.

4.
Sci Rep ; 13(1): 10946, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414929

RESUMO

Liver fibrosis is caused by chronic hepatic injury and may lead to cirrhosis, and even hepatocellular carcinoma. When hepatic stellate cells (HSCs) are activated by liver injury, they transdifferentiate into myofibroblasts, which secrete extracellular matrix proteins that generate the fibrous scar. Therefore, it is extremely urgent to find safe and effective drugs for HSCs activation treatment to prevent liver against fibrosis. Here, we reported that PDZ and LIM domain protein 1 (PDLIM1), a highly conserved cytoskeleton organization regulator, was significantly up-regulated in fibrotic liver tissues and TGF-ß-treated HSC-T6 cells. Through transcriptome analysis, we found that knockdown of PDLIM1 resulted in a significant downregulation of genes related to inflammation and immune-related pathways in HSC-T6 cells. Moreover, PDLIM1 knockdown significantly inhibited the activation of HSC-T6 cells and the trans-differentiation of HSC-T6 cells into myofibroblasts. Mechanistically, PDLIM1 is involved in the regulation of TGF-ß-mediated signaling pathways in HSCs activation. Thus, targeting PDLIM1 may provide an alternative method to suppress HSCs activation during liver injury. CCCTC-binding factor (CTCF), a master regulator of genome architecture, is upregulated during HSCs activation. PDLIM1 knockdown also indirectly reduced CTCF protein expression, however, CTCF binding to chromatin was not significantly altered by CUT&Tag analysis. We speculate that CTCF may cooperate with PDLIM1 to activate HSCs in other ways. Our results suggest that PDLIM1 can accelerate the activation of HSCs and liver fibrosis progression and could be a potential biomarker for monitoring response to anti-fibrotic therapy.


Assuntos
Neoplasias Hepáticas , Transdução de Sinais , Humanos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Hepáticas/patologia
5.
Front Plant Sci ; 13: 913717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812974

RESUMO

Iridoid glycoside is the important secondary metabolite and the main active component in Rehmannia glutinosa. However, the mechanisms that underlie the regulation of iridoid glycoside biosynthesis remain poorly understood in R. glutinosa. Herein, the analysis of RNA-seq data revealed that 3,394 unigenes related to the biosynthesis of secondary metabolites were identified in R. glutinosa. A total of 357 unigenes were involved in iridoid glycoside synthesis, in which the highly conservative genes, such as DXS, DXR, GPPS, G10H, and 10HGO, in organisms were overexpressed. The analysis of the above genes confirmed that the co-occurrence ratio of DXS, DXR, and GPPS was high in plants. Further, our results showed that under normal and 5-azacytidine (5-azaC) treatment, the expression levels of DXS, DXR, GPPS, G10H, and 10HGO were consistent with the iridoid glycoside accumulation in R. glutinosa, in which the application of the different concentrations of 5-azaC, especially 50 µM 5-azaC, could significantly upregulate the expression of five genes above and iridoid glycoside content. In addition, the changes in the spatiotemporal specificity of degree and levels of DNA methylation were observed in R. glutinosa, in which the hemi-methylation was the main reason for the change in DNA methylation levels. Similar to the changes in 5-methyl cytosine (5mC) content, the DNA demethylation could be induced by 5-azaC and responded in a dose-dependent manner to 15, 50, and 100 µM 5-azaC. Taken together, the expression of iridoid glycoside synthesis gene was upregulated by the demethylation in R. glutinosa, followed by triggering the iridoid glycoside accumulation. These findings not only identify the key genes of iridoid glycoside synthesis from R. glutinosa, but also expand our current knowledge of the function of methylation in iridoid glycoside accumulation.

6.
BMC Genomics ; 23(1): 483, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780101

RESUMO

BACKGROUND: Zinc finger protein 143(ZNF143), a member of the Krüppel C2H2-type zinc finger protein family, is strongly associated with cell cycle regulation and cancer development. A recent study suggested that ZNF143 plays as a transcriptional activator that promotes hepatocellular cancer (HCC) cell proliferation and cell cycle transition. However, the exact biological role of ZNF143 in liver regeneration and normal liver cell proliferation has not yet been investigated. METHODS: In our study, we constructed a stable rat liver cell line (BRL-3A) overexpressing ZNF143 and then integrated RNA-seq and Cleavage Under Targets and Tagmentation (CUT&Tag) data to identify the mechanism underlying differential gene expression. RESULTS: Our results show that ZNF143 expression is upregulated during the proliferation phase of liver regeneration after 2/3 partial hepatectomy (PH). The cell counting kit-8 (CCK-8) assay, EdU staining and RNA-seq data analyses revealed that ZNF143 overexpression (OE) significantly inhibited BRL-3A cell proliferation and cell cycle progression. We then performed CUT&Tag assays and found that approximately 10% of ZNF143-binding sites (BSs) were significantly changed genome-wide by ZNF143 OE. However, CCCTC-binding factor (CTCF) binding to chromatin was not affected. Interestingly, the integration analysis of RNA-seq and CUT&Tag data showed that some of genes affected by ZNF143 differential BSs are in the center of each gene regulation module. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these genes are critical in the maintenance of cell identity. CONCLUSION: These results indicated that the expression level of ZNF143 in the liver is important for the maintenance of cell identity. ZNF143 plays different roles in HCC and normal liver cells and may be considered as a potential therapeutic target in liver disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Proliferação de Células/genética , Ratos , Transativadores/genética , Transativadores/metabolismo
7.
Talanta ; 154: 119-26, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27154656

RESUMO

Well-dispersed velvet-like graphitic carbon nitride nanoparticles with a large surface area were prepared and utilized for separation and concentration of bioactive compounds from fruit extracts by fast (20s) forced adsorption. The large surface area, enhanced non-covalent interactions of this nanoparticle with bioactive compounds and good dispersity in different solvents benefited its application as a good sorbent. To evaluate their adsorption capabilities, these carbon nitride nanoparticles were used for separation and concentration of flavonoids from fruit extracts by a forced-adsorption dispersive solid phase extraction method. The combined use of this nanoparticle and our experimental conditions showed excellent precision (3.6-4.7%) and sensitivity (limits of detection (S/N=3): 0.6-3.75ng/mL). This research provides an alternative strategy to prepare suitable sorbents for adsorption, separation and concentration of various compounds from different extracts.


Assuntos
Produtos Biológicos/análise , Adsorção , Grafite , Nitrilas , Extração em Fase Sólida , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...