Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 285: 127730, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805981

RESUMO

The tigecycline resistance gene tet(X4) has been widely reported in animals and animal products in some Asian countries including China in recent years but only sporadically detected in human. In this study, we investigated the prevalence and genetic features of tet(X4)-positive clinical E. coli strains. A total of 462 fecal samples were collected from patients in four hospitals located in four provinces in China in 2023. Nine tet(X4)-positive E. coli strains were isolated and subjected to characterization of their genetic and phenotypic features by performing antimicrobial susceptibility test, whole-genome sequencing, bioinformatic and phylogenetic analysis. The majority of the test strains were found to exhibit resistance to multiple antimicrobial agents including tigecycline but remained susceptible to colistin and meropenem. A total of seven different sequence types (STs) and an unknown ST type were identified among the nine tet(X4)-positive strains. Notably, the tet(X4) gene in six out of these nine tet(X4)-positive E. coli strains was located in a IncFIA-HI1A-HI1B hybrid plasmid, which was an tet(X4)-bearing epidemic plasmid responsible for dissemination of the tet(X4) gene in China. Furthermore, the tet(X4) gene in four out of nine tet(X4)-positive E. coli isolates could be successfully transferred to E. coli EC600 through conjugation. In conclusion, this study characterized the epidemic tet(X4)-bearing plasmids and tet(X4)-associated genetic environment in clinical E. coli strains, suggested the importance of continuous surveillance of such tet(X4)-bearing plasmids to control the increasingly widespread dissemination of tigecycline-resistant pathogens in clinical settings in China.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Escherichia coli , Fezes , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos , Tigeciclina , China/epidemiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Plasmídeos/genética , Humanos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Antibacterianos/farmacologia , Tigeciclina/farmacologia , Fezes/microbiologia , Prevalência , Sequenciamento Completo do Genoma , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Farmacorresistência Bacteriana Múltipla/genética , Genômica
2.
Front Plant Sci ; 15: 1344647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450409

RESUMO

Appropriate straw incorporation has ample agronomic and environmental benefits, but most studies are limited to straw mulching or application on the soil surface. To determine the effect of depth of straw incorporation on the crop yield, soil organic carbon (SOC), total nitrogen (TN) and greenhouse gas emission, a total of 4 treatments were set up in this study, which comprised no straw returning (CK), straw returning at 15 cm (S15), straw returning at 25 cm (S25) and straw returning at 40 cm (S40). The results showed that straw incorporation significantly increased SOC, TN and C:N ratio. Compared with CK treatments, substantial increases in the grain yield (by 4.17~5.49% for S15 and 6.64~10.06% for S25) were observed under S15 and S25 treatments. S15 and S25 could significantly improve the carbon and nitrogen status of the 0-40 cm soil layer, thereby increased maize yield. The results showed that the maize yield was closely related to the soil carbon and nitrogen index of the 0-40 cm soil layer. In order to further evaluate the environmental benefits of straw returning, this study measured the global warming potential (GWP) and greenhouse gas emission intensity (GHGI). Compared with CK treatments, the GWP of S15, S25 and S40 treatments was increased by 9.35~20.37%, 4.27~7.67% and 0.72~6.14%, respectively, among which the S15 treatment contributed the most to the GWP of farmland. GHGI is an evaluation index of low-carbon agriculture at this stage, which takes into account both crop yield and global warming potential. In this study, GHGI showed a different trend from GWP. Compared with CK treatments, the S25 treatments had no significant difference in 2020, and decreased significantly in 2021 and 2022. This is due to the combined effect of maize yield and cumulative greenhouse gas emissions, indicating that the appropriate straw returning method can not only reduce the intensity of greenhouse gas emissions but also improve soil productivity and enhance the carbon sequestration effect of farmland soil, which is an ideal soil improvement and fertilization measure.

3.
Plants (Basel) ; 12(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36840177

RESUMO

At present, extracting water-soluble organic matter (WSOM) from agricultural organic waste is primarily used to evaluate soil organic matter content in farmland. However, only a few studies have focused on its vertical behavior in the soil profile. This study aims to clarify the three-dimensional fluorescence spectrum characteristics of the WSOM samples in 0-60 cm black soil profile before and after different chemical fertilizer treatments after six years of fertilization. Fluorescence spectroscopy combined with fluorescence and ultraviolet-visible (UV-Vis) spectroscopies are used to divide four different fertilization types: no fertilization (T0), nitrogen phosphorus potassium (NPK) (T1), biochar (T2), biochar + NPK (T3), and biochar + N (T4) in a typical black soil area. The vertical characteristics of WSOC are also analyzed. The results showed that after six years of nitrogen application, T2 had a significant effect on the fluorescence intensity of Zone II (decreasing by 9.6% in the 0-20 cm soil layer) and Zone V (increasing by 8.5% in the 0-20 cm soil layer). The fluorescent components identified in each treatment group include ultraviolet radiation A humic acid-like substances (C1), ultraviolet radiation C humic acid-like substances (C2), and tryptophan-like substance (C3). As compared with the land with T1, the content of C2 in the 20-60 cm soil layer with T2 was lower, while that of C2 in the surface and subsoil with T3 was higher. In addiiton, there were no significant differences in the contents of C1, C2, and C3 by comparing the soils applied with T3 and T4, respectively. The composition of soil WSOM was found to be significantly influenced by the addition of a mixture of biochar and chemical fertilizers. The addition of biochar alone exerted a positive effect on the humification process in the surface soil (0-10 cm). NPK treatment could stimulate biological activity by increasing biological index values in deeper soil layers (40-50 cm). Nitrogen is the sovereign factor that improves the synergism effect of chemical fertilizer and biochar during the humification process. According to the UV-Vis spectrum and optical index, soil WSOM originates from land and microorganisms. This study reveals the dynamics of WSOC in the 0-60 cm soil layer and the biogeochemical effect of BC fertilizer treatment on the agricultural soil ecosystem.

4.
Org Lett ; 25(5): 782-787, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36700837

RESUMO

We would like to describe an efficient and highly enantioselective Mukaiyama-Michael reaction of silyl ketene acetals with ß,γ-unsaturated α-keto esters catalyzed by a chiral magnesium BINOL-derived phosphate. The resulting functionalized 1,5-dicarbonyl adducts are obtained in high yields (up to 96%) and with excellent enantioselectivities (up to 98%) under mild conditions. Two plausible mechanistic pathways were proposed, including a 1,4-addition and a hetero Diels-Alder [4 + 2] cycloaddition.

5.
Front Epidemiol ; 3: 1304324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38455926

RESUMO

Carbapenem-resistant Enterobacterales (CRE) is a global concern. This study investigated the prevalence of fecal colonization carriage and clonal dissemination of CRE among population in four provinces of China. A total of 685 stool samples were collected from four provinces in China. Among these samples, 141 and 544 were obtained from healthy and hospitalized individuals, respectively. The overall fecal carriage rate was 9.6% (65/685) with 4.26% (95% CI: 0.9-7.6) in healthy individuals and 10.84% (95% CI: 8.2-13.5) in hospitalized patients. The highest prevalence was in Henan province (18.35%, 95% CI: 9%-18.7%). Sixty-six CRE isolates were identified in Escherichia coli (56.06%, 37/66), Klebsiella (15.15%, 10/66), Citrobacter (13.63%, 9/66), Enterobacter (12.12%, 8/66), and Atlantibacter (1.51%, 1/66). All CRE strains carried carbapenemase genes and multiple antibiotics resistance genes, blaNDM-5 (77.27%, 51/66) was the most common carbapenemase gene, followed by blaNDM-1 (19.69%, 13/66). Antibiotic resistance genes, including blaIMP-4, and the colistin colistin resistance (mcr-1) gene were also identified. All CRE isolates belonged to different sequence types (STs). ST206 (36.84%, 14/38) in E. coli and ST2270 (60%, 6/10) in Klebsiella were significantly dominant clones. The results indicated the prevalence of CRE fecal carriage among adults of China, mostly blaNDM-producing E coli, which pose significant challenges for clinical management. Screening for CRE colonization is necessary to control infection.

6.
Sci Rep ; 12(1): 14620, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028556

RESUMO

Maize (Zea mays L.) is one of the most widely distributed and important crops in China. Maize ear differentiation plays an important role grain yield formation. However, it is unclear if ear and root morphophysiology status affects yield formation by altering ear differentiation and development under different nitrogen (N) conditions. The aim of this study is to understand how the ear differentiation and development are affected by ear and root morphophysiology traits, as affected by the N rate. The experiment consisted of two N rates: high nitrogen (180 kg ha-1), and low nitrogen (60 kg ha-1). Two N-efficient varieties (NEVs) and two N-inefficient varieties (NIVs) were grown in the field. The results showed higher nitrogen accumulation and grain yield in NEVs than in NIVs, which was mainly attributed to the increased N uptake by the larger root system under both N conditions. Under high N conditions, among ear differentiation-related traits, only FR was significantly positively correlated with grain yield, and NEVs ensure FR through higher N concentration and ZR content in ear at the fertilization stage. Under low N conditions, NEVs obtained higher FP, SR and FR through higher N concentration and IAA in ear at the early stage of ear differentiation, maintained lower AR and BTL by higher RA, R-ZR and E-ZR at the late stage of ear growth. These results suggest that NEVs have a more complex mechanism for obtaining higher grain yield under low N conditions than N sufficiency, and that phytohormones play an important role in this process.


Assuntos
Nitrogênio , Zea mays , Grão Comestível , Reguladores de Crescimento de Plantas , Estruturas Vegetais
7.
Nanomaterials (Basel) ; 12(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407214

RESUMO

Developing high-performance electrode materials is in high demand for the development of supercapacitors. Herein, defect and interface engineering has been simultaneously realized in NiMoO4 nanowire arrays (NWAs) using a simple sucrose coating followed by an annealing process. The resultant hierarchical oxygen-deficient NiMoO4@C NWAs (denoted as "NiMoO4-x@C") are grown directly on conductive ferronickel foam substrates. This composite affords direct electrical contact with the substrates and directional electron transport, as well as short ionic diffusion pathways. Furthermore, the coating of the amorphous carbon shell and the introduction of oxygen vacancies effectively enhance the electrical conductivity of NiMoO4. In addition, the coated carbon layer improves the structural stability of the NiMoO4 in the whole charging and discharging process, significantly enhancing the cycling stability of the electrode. Consequently, the NiMoO4-x@C electrode delivers a high areal capacitance of 2.24 F cm-2 (1720 F g-1) at a current density of 1 mA cm-2 and superior cycling stability of 84.5% retention after 6000 cycles at 20 mA cm-2. Furthermore, an asymmetric super-capacitor device (ASC) has been constructed with NiMoO4-x@C as the positive electrode and activated carbon (AC) as the negative electrode. The as-assembled ASC device shows excellent electrochemical performance with a high energy density of 51.6 W h kg-1 at a power density of 203.95 W kg-1. Moreover, the NiMoO4//AC ASC device manifests remarkable cyclability with 84.5% of capacitance retention over 6000 cycles. The results demonstrate that the NiMoO4-x@C composite is a promising material for electrochemical energy storage. This work can give new insights on the design and development of novel functional electrode materials via defect and interface engineering through simple yet effective chemical routes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...