Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Endocrinol Metab ; 34(11): 688-690, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673764

RESUMO

Cytoplasmic mitochondrial DNA (mtDNA) can trigger the interferon response to promote disease progression, but mtDNA sensing mechanisms remain elusive. Lei et al. have shown that Z-DNA binding protein1 (ZBP1) cooperates with cyclic GMP-AMP synthase (cGAS) to sense Z-form mtDNA and transmit mtDNA stress signals to promote diseases such as cardiotoxicity, providing an important piece of the mtDNA stress landscape.

2.
Signal Transduct Target Ther ; 8(1): 255, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394473

RESUMO

Thoracic aortic aneurysms (TAAs) develop asymptomatically and are characterized by dilatation of the aorta. This is considered a life-threating vascular disease due to the risk of aortic rupture and without effective treatments. The current understanding of the pathogenesis of TAA is still limited, especially for sporadic TAAs without known genetic mutation. Sirtuin 6 (SIRT6) expression was significantly decreased in the tunica media of sporadic human TAA tissues. Genetic knockout of Sirt6 in mouse vascular smooth muscle cells accelerated TAA formation and rupture, reduced survival, and increased vascular inflammation and senescence after angiotensin II infusion. Transcriptome analysis identified interleukin (IL)-1ß as a pivotal target of SIRT6, and increased IL-1ß levels correlated with vascular inflammation and senescence in human and mouse TAA samples. Chromatin immunoprecipitation revealed that SIRT6 bound to the Il1b promoter to repress expression partly by reducing the H3K9 and H3K56 acetylation. Genetic knockout of Il1b or pharmacological inhibition of IL-1ß signaling with the receptor antagonist anakinra rescued Sirt6 deficiency mediated aggravation of vascular inflammation, senescence, TAA formation and survival in mice. The findings reveal that SIRT6 protects against TAA by epigenetically inhibiting vascular inflammation and senescence, providing insight into potential epigenetic strategies for TAA treatment.


Assuntos
Aneurisma da Aorta Torácica , Sirtuínas , Humanos , Camundongos , Animais , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Inflamação/genética , Angiotensina II/genética , Angiotensina II/farmacologia , Epigênese Genética/genética , Sirtuínas/genética
3.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35419596

RESUMO

Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal tissues and explored CS-associated phenotypes by integrating multiplatform data from ~20 000 patients and ~212 000 single-cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in 72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights into CS roles in cancer- and senescence-related biomarker discovery.


Assuntos
Neoplasias da Próstata , Microambiente Tumoral , Senescência Celular/genética , Genômica , Humanos , Imunoterapia , Masculino , Neoplasias da Próstata/genética , Microambiente Tumoral/genética
4.
J Mol Cell Cardiol ; 162: 43-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34437878

RESUMO

Cardiovascular diseases are a serious threat to human health, especially in the elderly. Vascular aging makes people more susceptible to cardiovascular diseases due to significant dysfunction or senescence of vascular cells and maladaptation of vascular structure and function; moreover, vascular aging is currently viewed as a modifiable cardiovascular risk factor. To emphasize the relationship between senescent cells and vascular aging, we first summarize the roles of senescent vascular cells (endothelial cells, smooth muscle cells and immune cells) in the vascular aging process and inducers that contribute to cellular senescence. Then, we present potential strategies for directly targeting senescent cells (senotherapy) or preventively targeting senescence inducers (senoprevention) to delay vascular aging and the development of age-related vascular diseases. Finally, based on recent research, we note some important questions that still need to be addressed in the future.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Idoso , Envelhecimento , Doenças Cardiovasculares/etiologia , Senescência Celular , Humanos , Miócitos de Músculo Liso
5.
Chin Med Sci J ; 35(1): 43-53, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32299537

RESUMO

Objective Angiotensin Ⅱ (Ang Ⅱ)-induced vascular damage is a major risk of hypertension. However, the underlying molecular mechanism of AngⅡ-induced vascular damage is still unclear. In this study, we explored the novel mechanism associated with Ang II-induced hypertension. Methods We treated 8- to 12-week-old C57BL/6J male mice with saline and Ang Ⅱ(0.72 mg/kg·d) for 28 days, respectively. Then the RNA of the media from the collected mice aortas was extracted for transcriptome sequencing. Principal component analysis was applied to show a clear separation of different samples and the distribution of differentially expressed genes was manifested by Volcano plot. Functional annotations including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed to reveal the molecular mechanism of Ang Ⅱ-induced hypertension. Finally, the differentially expressed genes were validated by using quantitative real-time PCR. Results The result revealed that a total of 773 genes, including 599 up-regulated genes and 174 down-regulated genes, were differentially expressed in the aorta of Ang Ⅱ-induced hypertension mice model. Functional analysis of differentially expressed genes manifested that various cellular processes may be involved in the Ang Ⅱ-induced hypertension, including some pathways associated with hypertension such as extracellular matrix, inflammation and immune response. Interestingly, we also found that the differentially expressed genes were enriched in vascular aging pathway, and further validated that the expression levels of insulin-like growth factor 1 and adiponectin were significantly increased (P<0.05). Conclusion We identify that vascular aging is involved in Ang Ⅱ-induced hypertension, and insulin-like growth factor 1 and adiponectin may be important candidate genes leading to vascular aging.


Assuntos
Envelhecimento , Aorta/metabolismo , Perfilação da Expressão Gênica/métodos , Hipertensão/genética , Angiotensina II , Animais , Aorta/fisiopatologia , Pressão Sanguínea/genética , Ontologia Genética , Hipertensão/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Adv Exp Med Biol ; 1086: 55-75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30232752

RESUMO

Vascular aging refers to the structural and functional defects that occur in the aorta during the aging process and is characterized by increased vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Vascular aging is a major risk factor for vascular diseases. However, the current understanding of the biological process of vascular aging and age-related diseases is insufficient. Epigenetic regulation can influence gene expression independently of the gene sequence and mainly includes DNA methylation, histone modifications, and RNA-based gene regulation. Epigenetic regulation plays important roles in many physiological and pathophysiological processes and may explain some gaps in our knowledge regarding the interaction between genes and diseases. In this review, we summarize recent advances in the understanding of the epigenetic regulation of vascular aging and age-related diseases in terms of vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Moreover, the possibility of targeting epigenetic regulation to delay vascular aging and treat age-related vascular diseases is also discussed.


Assuntos
Envelhecimento/genética , Epigênese Genética , Doenças Vasculares/genética , Senescência Celular , Metilação de DNA , Humanos
7.
Circulation ; 136(23): 2271-2283, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28978552

RESUMO

BACKGROUND: Abnormal amino acid metabolism is associated with vascular disease. However, the causative link between dysregulated tryptophan metabolism and abdominal aortic aneurysm (AAA) is unknown. METHODS: Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in the kynurenine pathway of tryptophan metabolism. Mice with deficiencies in both apolipoprotein e (Apoe) and IDO (Apoe-/-/IDO-/-) were generated by cross-breeding IDO-/- mice with Apoe-/- mice. RESULTS: The acute infusion of angiotensin II markedly increased the incidence of AAA in Apoe-/- mice, but not in Apoe-/-/IDO-/- mice, which presented decreased elastic lamina degradation and aortic expansion. These features were not altered by the reconstitution of bone marrow cells from IDO+/+ mice. Moreover, angiotensin II infusion instigated interferon-γ, which induced the expression of IDO and kynureninase and increased 3-hydroxyanthranilic acid (3-HAA) levels in the plasma and aortas of Apoe-/- mice, but not in IDO-/- mice. Both IDO and kynureninase controlled the production of 3-HAA in vascular smooth muscle cells. 3-HAA upregulated matrix metallopeptidase 2 via transcription factor nuclear factor-κB. Furthermore, kynureninase knockdown in mice restrained 3-HAA, matrix metallopeptidase 2, and resultant AAA formation by angiotensin II infusion. Intraperitoneal injections of 3-HAA into Apoe-/- and Apoe-/-/IDO-/- mice for 6 weeks increased the expression and activity of matrix metallopeptidase 2 in aortas without affecting metabolic parameters. Finally, human AAA samples had stronger staining with the antibodies against 3-HAA, IDO, and kynureninase than those in adjacent nonaneurysmal aortic sections of human AAA samples. CONCLUSIONS: These data define a previously undescribed causative role for 3-HAA, which is a product of tryptophan metabolism, in AAA formation. Furthermore, these findings suggest that 3-HAA reduction may be a new target for treating cardiovascular diseases.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Angiotensina II , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Triptofano/metabolismo , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Transplante de Medula Óssea , Células Cultivadas , Dilatação Patológica , Modelos Animais de Doenças , Tecido Elástico/metabolismo , Tecido Elástico/patologia , Genótipo , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Fenótipo , Fatores de Tempo
8.
J Exp Med ; 213(11): 2473-2488, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27670594

RESUMO

Abdominal aortic aneurysm (AAA), characterized by a localized dilation of the abdominal aorta, is a life-threatening vascular pathology. Because of the current lack of effective treatment for AAA rupture, prevention is of prime importance for AAA management. Calorie restriction (CR) is a nonpharmacological intervention that delays the aging process and provides various health benefits. However, whether CR prevents AAA formation remains untested. In this study, we subjected Apoe-/- mice to 12 wk of CR and then examined the incidence of angiotensin II (AngII)-induced AAA formation. We found that CR markedly reduced the incidence of AAA formation and attenuated aortic elastin degradation in Apoe-/- mice. The expression and activity of Sirtuin 1 (SIRT1), a key metabolism/energy sensor, were up-regulated in vascular smooth muscle cells (VSMCs) upon CR. Importantly, the specific ablation of SIRT1 in smooth muscle cells abolished the preventive effect of CR on AAA formation in Apoe-/- mice. Mechanistically, VSMC-SIRT1-dependent deacetylation of histone H3 lysine 9 on the matrix metallopeptidase 2 (Mmp2) promoter was required for CR-mediated suppression of AngII-induced MMP2 expression. Together, our findings suggest that CR may be an effective intervention that protects against AAA formation.


Assuntos
Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Restrição Calórica , Acetilação , Angiotensina II , Animais , Aorta/metabolismo , Aneurisma da Aorta Abdominal/sangue , Aneurisma da Aorta Abdominal/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Cromatina/metabolismo , Epigênese Genética , Glucose/metabolismo , Histonas/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/metabolismo , Lisina/metabolismo , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Fosforilação Oxidativa , Regiões Promotoras Genéticas/genética , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...