Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(9): 7033-7047, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38634331

RESUMO

A brand-new enhanced starvation is put forward to trigger sensitized chemotherapy: blocking tumor-relation blood vessel formation and accelerating nutrient degradation and efflux. Following this concept, two cisplatin-like gemfibrozil-derived Pt(IV) prodrugs, GP and GPG, are synthesized. GP and GPG had nanomolar IC50 against A2780 cells and higher selectivity against normal cells than cisplatin. Bioactivity results confirmed that GP and GPG highly accumulated in cells and induced DNA damage, G2-phase arrest, and p53 expression. Besides, they could increase ROS and MDA levels and reduce mitochondrial membrane potential and Bcl-2 expression to promote cell apoptosis. In vivo, GP showed superior antitumor activity in A2780 tumor-bearing mice with no observable tissue damage. Mechanistic studies suggested that highly selective chemotherapy could be due to the new enhanced starvation effect: blocking vasculature formation via inhibiting the CYP2C8/EETs pathway and VEGFR2, NF-κB, and COX-2 expression and cholesterol efflux and degradation acceleration via increasing ABCA1 and PPARα.


Assuntos
Antineoplásicos , Genfibrozila , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Genfibrozila/farmacologia , Camundongos Endogâmicos BALB C , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química
2.
Cell Death Discov ; 9(1): 450, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086844

RESUMO

Cepharanthine (CEP), a bioactive compound derived from Stephania Cephalantha Hayata, is cytotoxic to various malignancies. However, the underlying mechanism of gastric cancer is unknown. CEP inhibited the cellular activity of gastric cancer AGS, HGC27 and MFC cell lines in this study. CEP-induced apoptosis reduced Bcl-2 expression and increased cleaved caspase 3, cleaved caspase 9, Bax, and Bad expression. CEP caused a G2 cell cycle arrest and reduced cyclin D1 and cyclin-dependent kinases 2 (CDK2) expression. Meanwhile, it increased oxidative stress, decreased mitochondrial membrane potential, and enhanced reactive oxygen species (ROS) accumulation in gastric cancer cell lines. Mechanistically, CEP inhibited Kelch-like ECH-associated protein (Keap1) expression while activating NF-E2 related factor 2 (Nrf2) nuclear translocations, increasing transcription of Nrf2 target genes quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HMOX1), and glutamate-cysteine ligase modifier subunit (GCLM). Furthermore, a combined analysis of targeted energy metabolism and RNA sequencing revealed that CEP could alter the levels of metabolic substances such as D (+) - Glucose, D-Fructose 6-phosphate, citric acid, succinic acid, and pyruvic acid, thereby altering energy metabolism in AGS cells. In addition, CEP significantly inhibited tumor growth in MFC BALB/c nude mice in vivo, consistent with the in vitro findings. Overall, CEP can induce oxidative stress by regulating Nrf2/Keap1 and alter energy metabolism, resulting in anti-gastric cancer effects. Our findings suggest a potential application of CEP in gastric cancer treatment.

3.
Biosci Biotechnol Biochem ; 72(6): 1571-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18540102

RESUMO

A farnesyl-diphosphate synthase gene, designated GlFPS, was isolated from a triterpene-producing basidiomycetous fungus, Ganoderma lucidum. The GlFPS cDNA was found to contain an open reading frame of 1,083 bp, encoding a protein of 360 amino acids with a calculated molecular mass of 41.27 kDa. The deduced amino acid sequence of the GlFPS cDNA exhibited a high homology with other fungal FPS genes, and contained four conserved domains. Phylogenetic analysis showed that GlFPS belonged to the basidiomycete FPS group. Competitive PCR revealed that GlFPS was constitutively expressed in the mycelium growth stage, whereas the transcripts of GlFPS accumulated to high levels rapidly during the process of mushroom primordia. Treatment of mycelia with exogenous methyl jasmonate also caused a large accumulation of GlFPS mRNA. Subsequently, promoter analysis indicated that the 5' upstream region of GlFPS possessed various potential regulatory elements associated with physiological and environmental factors. Functional complementation of GlFPS in an ERG20-disrupted yeast strain indicated that the cloned cDNA encoded a farnesyl-diphosphate synthase.


Assuntos
Expressão Gênica , Geraniltranstransferase/metabolismo , Reishi/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Geraniltranstransferase/genética , Geraniltranstransferase/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Reishi/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...