Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 23(2): 129-47, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25756524

RESUMO

AIMS: The mechanisms underlying numerous biological roles of hydrogen sulfide (H2S) remain largely unknown. We have previously reported an inhibitory role of H2S in the L-type calcium channels in cardiomyocytes. This prompts us to examine the mechanisms underlying the potential regulation of H2S on the ion channels. RESULTS: H2S showed a novel inhibitory effect on Ito potassium channels, and this effect was blocked by mutation at the Cys320 and/or Cys529 residues of the Kv4.2 subunit. H2S broke the disulfide bridge between a pair of oxidized cysteine residues; however, it did not modify single cysteine residues. H2S extended action potential duration in epicardial myocytes and regularized fatal arrhythmia in a rat model of myocardial infarction. H2S treatment significantly increased survival by ∼1.4-fold in the critical 2-h time window after myocardial infarction with a protection against ventricular premature beats and fatal arrhythmia. However, H2S did not change the function of other ion channels, including IK1 and INa. INNOVATION AND CONCLUSION: H2S targets the Cys320/Cys529 motif in Kv4.2 to regulate the Ito potassium channels. H2S also shows a potent regularizing effect against fatal arrhythmia in a rat model of myocardial infarction. The study provides the first piece of evidence for the role of H2S in regulating Ito potassium channels and also the specific motif in an ion channel labile for H2S regulation.


Assuntos
Motivos de Aminoácidos/efeitos dos fármacos , Arritmias Cardíacas/metabolismo , Cisteína/metabolismo , Sulfeto de Hidrogênio/farmacologia , Infarto do Miocárdio/metabolismo , Canais de Potássio Shal/metabolismo , Animais , Arritmias Cardíacas/tratamento farmacológico , Dissulfetos/metabolismo , Células HEK293 , Humanos , Sulfeto de Hidrogênio/uso terapêutico , Masculino , Mutação , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Ratos , Canais de Potássio Shal/antagonistas & inibidores , Canais de Potássio Shal/genética
2.
Antioxid Redox Signal ; 19(1): 5-23, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23293908

RESUMO

AIMS: To examine if hydrogen sulfide (H2S) can promote glucose uptake and provide amelioration in type 2 diabetes. RESULTS: Treatment with sodium hydrosulfide (NaHS, an H2S donor) increased glucose uptake in both myotubes and adipocytes. The H2S gas solution showed similar effects. The NaHS effects were blocked by an siRNA-mediated knockdown of the insulin receptor (IR). NaHS also increased phosphorylation of the IR, PI3K, and Akt. In Goto-Kakizaki (GK) diabetic rats, chronic NaHS treatment (30 µmol·kg(-1)·day(-1)) decreased fasting blood glucose, increased insulin sensitivity, and increased glucose tolerance with increased phosphorylation of PI3K and Akt in muscles. Similar insulin-sensitizing effects of NaHS treatment were also observed in Wistar rats. Moreover, glucose uptake was reduced in the cells with siRNA-mediated knockdown of the H2S-generating enzyme cystathionine γ-lyase in the presence or absence of exogenous H2S. Moreover, chronic NaHS treatment reduced oxygen species and the number of crescentic glomeruli in the kidney of GK rats. INNOVATION AND CONCLUSION: This study provides the first piece of evidence for the insulin-sensitizing effect of NaHS/H2S in the both in vitro and in vivo models of insulin resistance. REBOUND TRACK: This work was rejected during a standard peer review and rescued by the Rebound Peer Review (Antoxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Jin-Song Bian, Samuel Dudley, Hideo Kimura, and Xian Wang.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glucose/metabolismo , Sulfeto de Hidrogênio/metabolismo , Rim/patologia , Receptor de Insulina/metabolismo , Células 3T3-L1 , Animais , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Ratos , Ratos Endogâmicos , Sulfetos/farmacologia
3.
Antioxid Redox Signal ; 12(9): 1065-77, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19842913

RESUMO

It is not known whether H(2)S can promote angiogenesis with improvement of regional blood flow in ischemic organs. Sodium hydrosulfide (NaHS, a H(2)S donor) was administered once a day for 4 w following femoral artery ligation. Collateral vessel growth, capillary density, regional tissue blood flow, the expression of endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2) and Akt were examined during or at the end of the treatment period. NaHS treatment significantly increased collateral vessel growth, capillary density, and regional tissue blood flow in ischemic hind limb muscles compared with the controls. These effects were associated with an increase in VEGF expression in the skeletal muscles and VEGFR2 phosphorylation in the neighboring vascular endothelial cells, suggesting a role of VEGF in mediating the NaHS effects in a cell-cell interaction pattern. Moreover, NaHS treatment also resulted in an increase in Akt phosphorylation in ischemic hind limb muscles. In conclusion, our observations with NaHS strongly suggest that H(2)S is a proangiogenic factor in chronic ischemia. The proangiogenic effect of NaHS may be mediated by interaction between the upregulated VEGF in the skeletal muscle cells and the VEGFR2 as well as its downstream signaling element Akt in the vascular endothelial cells.


Assuntos
Extremidades/patologia , Sulfeto de Hidrogênio/química , Isquemia , Neovascularização Patológica , Sulfetos/metabolismo , Animais , Comunicação Celular , Células Endoteliais/citologia , Hemodinâmica , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 292(1): H348-59, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16951045

RESUMO

The intracellular signaling of human urotensin II (hU-II) and its interaction with other vasoconstrictors such as ANG II are poorly understood. In endothelium-denuded rat aorta, coadministration of hU-II (1 nM) and ANG II (2 nM) exerted a significant contractile effect that was associated with increased protein kinase C (PKC) activity and phosphorylation of PKC-alpha/betaII and myosin light chain, whereas either hU-II or ANG II administered alone at these concentrations had no statistically significant effect. This synergistic effect was abrogated by the PKC inhibitor chelerythrine (10 and 30 microM), the selective PKC-alpha/betaII inhibitor Gö-6976 (0.1 and 1 microM), the hU-II receptor ligand urantide (30 nM and 1 microM), or the ANG II antagonist losartan (1 microM). Moreover, in endothelium-intact rat aorta, the synergistic effect of hU-II and ANG II was not exerted any longer, and this synergistic effect was unmasked by pretreatment of the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. hU-II (10 nM) alone caused a long-lasting increase in phospho-PKC-theta, phospho-myosin light chain, and PKC activity, which was associated with long-lasting vasoconstriction. These changes were prevented by chelerythrine. Methoxyverapamil-thapsigargin treatment reduced the hU-II-induced vasoconstriction by approximately 50%. The methoxyverapamil-thapsigargin-resistant component of hU-II-induced vasoconstriction was dose-dependently inhibited by chelerythrine. In conclusion, hU-II induces a novel PKC-dependent synergistic action with ANG II in inducing vasoconstriction. PKC-alpha/betaII is probably the PKC isoform involved in this synergistic action. Nitric oxide produced in the endothelium probably masks this synergistic action. The long-lasting vasoconstriction induced by hU-II alone is PKC dependent and associated with PKC-theta phosphorylation.


Assuntos
Angiotensina II/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Transdução de Sinais/fisiologia , Urotensinas/administração & dosagem , Urotensinas/metabolismo , Vasoconstrição/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteína Quinase C , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...