Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120847, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626486

RESUMO

Platinum group metals (PGMs) are strategic metals. Auto-exhaust catalysts are their main application fields. The recovery of PGMs from spent auto-exhaust catalysts has remarkable economic value and strategic significance. Aiming at the problems of ferrosilicon generation for Fe capturing and subsequent oxygen blowing to remove iron with high energy consumption and heat release, a technology of Fe-Sn synergistic capturing PGMs was proposed. Taking full the advantage of the lower melting point of Fe-Sn alloy (<1200 °C) and its unique affinity for PGMs, the PGMs were captured at approximate 1400 °C with Fe-Sn as the collector. In experiment, 500 g of spent auto-exhaust catalysts were employed to minimize error and approximate industrial production. The mechanism of Fe-Sn synergistic capturing PGMs was elucidated. The generation of Fe-Sn-PGMs alloy lowered the activity of [PGMs] in the system, accelerated the reduction of the PGMs oxides and promoted the alloying of [PGMs]. Therefore, Fe-Sn synergistic capturing PGMs was realized. The inability of Si to enter the alloy phase was confirmed by theoretical calculations, avoiding the generation of ferrosilicon. The effects of basicity, CaF2, m(Fe)/m(Sn) and the amount of collector on capturing PGMs were optimized. Under the optimized conditions (basicity R = 1.1, spent auto-exhaust catalysts 70 wt%, CaO 30 wt%, B2O3 10 wt%, CaF2 7 wt%, m(Fe)/m(Sn) = 1/1 and the collector 15 wt%), the content of PGMs in the slag phase was 2.46 g/t. It is feasible to remove Fe and Sn by oxidation to achieve the purpose of PGMs enrichment. This technology offers guidance on the safe, environmentally sound, and efficient disposal of spent auto-exhaust catalysts, promoting the sustainable development of PGMs.


Assuntos
Ferro , Platina , Platina/química , Ferro/química , Catálise , Metais/química , Estanho/química , Ligas/química
2.
Waste Manag ; 175: 183-190, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211472

RESUMO

The increasing scrapped Si-based photovoltaic (PV) panels has become an urgent problem, and their disposal is essential for resources utilization and environment issues. This paper proposes a comprehensive process for recycling of discarded silicon-based PV panels economically, environmentally, and efficiently. Based on the thermal properties of ethylene vinyl acetate (EVA), they are removed from the discarded PV panels at 600 °C with heating rate of 5 °C/min and maintain for one hour. The glass, solar cells, and copper strips were separated after heat treatment. Simultaneously, the solar cells were crushed into powder. Nitric acid was used to recover silver from the solar cell powder, while most of the metal impurities such as Mg, Ti and Al, were removed as well. The leaching efficiency of silver was over 96 % under the optimized conditions: HNO3 of 4.0 mol/L, liquid-to-solid ratio of 10:1, temperature of 50 °C for 80 min. Regarding the copper strips, they were sequentially treated with 0.5 mol/L CH3COOH and NaOH solution to remove the oxides of Pb and Sn on their surface. Subsequently, they were placed into the solution of 1.0 mol/L CuSO4 with pH of 2 âˆ¼ 3 to eliminate Pb and Sn. This article provides significant reference for the recycling of Si-based PV panels.


Assuntos
Cobre , Resíduo Eletrônico , Prata/química , Chumbo , Pós , Resíduo Eletrônico/análise , Reciclagem
3.
Sci Total Environ ; 802: 149830, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464795

RESUMO

Recovery of platinum group metals (PGMs) from secondary resources has attracted worldwide attention from environmental and economic points of view. Pyrometallurgical routes exhibit the superiority in terms of efficiency and contamination control compared to hydrometallurgical process. However, traditional pyrometallurgical processes face the challenges of excessive flux and energy consumption. In this paper, an iron capture process was proposed to recover low-grade PGMs from leaching residue of spent auto-exhaust catalysts. Slag design was explored aimed at reducing the addition amount of flux. The optimized smelting conditions were as follows: 1400 °C for 30 min, adding 40.0 wt% CaO, 22.7 wt% Na2CO3, 5.0 wt% Na2B4O7, 5.0 wt% CaF2, 15.0 wt% Fe, and 5.0 wt% C. The concentrations of Pt, Pd and Rh remaining in the smelting slag were 0.83 g/t, 4.99 g/t, and 1.47 g/t, respectively. Furthermore, the 50 kg-scale experiment implied positive economic feasibility because of saving flux dosage and smelting time. The capture mechanism was revealed by investigating the formation of the metals phase and slag phase. Matrix formed slag phase and separate with metals phase owing to differences in chemical bonding, density, viscosity, and surface tension. PGMs were proved solubilized in α-Fe as substitutional solid solutions. The formation energies for FePt, FePd, and FeRh alloys were -4.149 eV, -4.040 eV, and -4.360 eV, respectively. Finally, the obtained CaO-SiO2-Al2O3-Na2O glass slag was used for producing glass ceramics. To sum up, the iron capture process realized low energy and material consumption, high recovery efficiency of PGMs, and resource utilization of the glass slag.


Assuntos
Ferro , Dióxido de Silício , Catálise , Metais
4.
Materials (Basel) ; 12(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013817

RESUMO

Reclamation of spent catalysts for the efficient recovery of palladium (Pd) is gaining growing attention due to its scarcity and high supply risk. Currently Pd extraction from spent catalysts through an efficient, economical, and green method has remained a challenge. In this study, Fe3+ is utilized for leaching through oxidation of Pd in a mild condition. Before leaching, distillation was proposed to remove and recover the organics from spent catalysts. The effects of HCl concentration, Fe3+ concentration, NaCl concentration, leaching time, and temperature on the leaching efficiency of Pd were investigated to determine the optimum leaching conditions. The results show that Pd extraction and dissolution of Al2O3 increase with higher HCl concentration. The effect of NaCl on Pd leaching efficiency is significant at low acid concentration (2.0 mol/L HCl). The leaching efficiency was 99.5% for Pd under the following conditions: 2.0 mol/L HCl, 4.0 mol/L NaCl, and 0.67 mol/L Fe3+ at 80 °C for 90 min. The leaching kinetics fits best to the shrinking-core model of surface chemical reaction. The activation energy for the leaching of Pd was 47.6 kJ/mol. PdCl42- was selectively adsorbed by anion exchange resin. The filtrate containing adequate H+, Cl-, and Fe3+ was reused as leaching agent. Pd leaching efficiency was over 96% after five cycle times. This study provides an efficient process for recovery of Pd from spent catalysts.

5.
Waste Manag ; 65: 113-127, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28412098

RESUMO

New development and technological innovations make electrical and electronic equipment (EEE) more functional by using an increasing number of metals, particularly the critical metals (e.g. rare and precious metals) with specialized properties. As millions of people in emerging economies adopt a modern lifestyle, the demand for critical metals is soaring. However, the increasing demand causes the crisis of their supply because of their simple deficiency in the Earth's crust or geopolitical constraints which might create political issues for their supply. This paper focuses on the sustainable supply of typical critical metals (indium, rare earth elements (REEs), lithium, cobalt and precious metals) through recycling waste electrical and electronic equipment (WEEE). To illuminate this issue, the production, consumption, expected future demand, current recycling situation of critical metals, WEEE management and their recycling have been reviewed. We find that the demand of indium, REEs, lithium and cobalt in EEE will continuously increasing, while precious metals are decreasing because of new substitutions with less or even without precious metals. Although the generation of WEEE in 2014 was about 41.9 million tons (Mt), just about 15% (6.5 Mt) was treated environmentally. The inefficient collection of WEEE is the main obstacle to relieving the supply risk of critical metals. Furthermore, due to the widespread use in low concentrations, such as indium, their recycling is not just technological problem, but economic feasibility is. Finally, relevant recommendations are point out to address these issues.


Assuntos
Resíduo Eletrônico , Reciclagem , Eletrônica , Metais Terras Raras , Gerenciamento de Resíduos
6.
Waste Manag ; 45: 361-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26059074

RESUMO

Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling.


Assuntos
Resíduo Eletrônico/análise , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , China , Reciclagem/legislação & jurisprudência , Gerenciamento de Resíduos/legislação & jurisprudência
7.
Small ; 11(23): 2768-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25759264

RESUMO

Multishell Y2 O3 :Yb(3+) /Er(3+) hollow spheres with uniform morphologies and controllable inner structures are prepared successfully by using a glucose-template hydrothermal process followed by temperature-programmed calcination. Much enhanced upconverted photoluminescence of these Y2 O3 :Yb(3+) /Er(3+) are observed, which are due to the multiple reflections and the enhanced light-harvesting efficiency of the NIR light resulting from the special features of the multishell structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...