Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(4): 2127-2137, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38270538

RESUMO

The hitherto unknown hexakis(halomethyl)-functionalized tribenzotriquinacenes (TBTQs) 9 and 10 were synthesized from the key 4b,8b,12b-tribromo-TBTQ derivative 6 by an improved route in 67% overall yield. Extension of the bowl-shaped framework of 9 or 10 by threefold condensation with propargylamine or 2-azidoethylamine afforded the corresponding TBTQ-trialkyne 11 and TBTQ-triazide 12, respectively. While attempts to construct bis-TBTQ cages, including homodimerization of 11 and heterocoupling of 11 with 12, were unsuccessful, triazide 12 was found to undergo threefold [3 + 2]-cycloaddition with 3-ethynylaniline and phloroglucinol tripropargyl ether under click chemistry conditions. The latter reaction enabled facile capping of the TBTQ bowl to give the novel cage compound 5 in 22% yield.

2.
J Cancer ; 15(1): 251-274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164286

RESUMO

SOX2 is associated with the initiation, growth, and progression of various tumors and is related to stem cells. However, further studies of SOX2 in a pan-cancer context are warranted. In this study, we obtained pan-cancer and clinical data from TCGA, GTEx, STRING, and TISIDB databases and we analyzed the relationship between SOX2 expression levels and changes in gene diagnostics and survival prognosis. Additionally, we compared the expression levels of SOX2 in pancreatic cancer and healthy pancreatic tissues using Wilcoxon's rank-sum test. Functional enrichment analysis was conducted to identify potential signaling pathways and biological functions. To determine the prognostic value, we used the area under the curve (AUC) and Cox regression analysis. We further developed nomograms to predict overall survival at 1, 6, and 12 months after cancer diagnosis. Moreover, we assessed immune cell infiltration using single-sample gene set enrichment analysis. The methylation status of SOX2 was analyzed using the UALCAN and MethSurv databases. Furthermore, we verified the differential expression of SOX2 in pancreatic cancer cell lines by western blotting and quantitative polymerase chain reaction. We also confirmed the effect of SOX2 on the invasion and migration of pancreatic cancer cells using transwell and scratch assays. The biological effects were confirmed using a clone-formation assay. Our findings suggest that SOX2 is highly expressed in various tumor tissues and has potential clinical significance. It can be used as a new biomarker for pancreatic adenocarcinoma and plays a crucial role in immune infiltration.

3.
Biol Proced Online ; 26(1): 1, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178023

RESUMO

BACKGROUND: Gastric cancer (GC) is a common malignancy and a leading cause of cancer-related death with high morbidity and mortality. Methyl-CpG binding domain protein 3 (MBD3), a key epigenetic regulator, is abnormally expressed in several cancers, participating in progression and metastasis. However, the role of MBD3 in GC remains unknown. METHODS: MBD3 expression was assessed via public databases and validated by western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). The prognosis of MBD3 was analysed via bioinformatics based on the TCGA dataset. The migration, invasion and proliferation of GC cells were examined by transwell, wound healing, cell counting kit (CCK)-8, colony-formation and xenograft mouse models. Epithelial-mesenchymal transition (EMT) and phosphatidylinositide 3-kinases/ protein Kinase B (PI3K/AKT) pathway markers were evaluated by Western blotting. RNA sequencing was used to identify the target of MBD3. RESULTS: MBD3 expression was higher in GC tissues and cells than in normal tissues and cells. Additionally, high MBD3 levels were associated with poor prognosis in GC patients. Subsequently, we proved that MBD3 enhanced the migration, invasion and proliferation abilities of GC cells. Moreover, western blot results showed that MBD3 promoted EMT and activated the PI3K/AKT pathway. RNA sequencing analysis showed that MBD3 may increase actin γ1 (ACTG1) expression to promote migration and proliferation in GC cells. CONCLUSION: MBD3 promoted migration, invasion, proliferation and EMT by upregulating ACTG1 via PI3K/AKT signaling activation in GC cells and may be a potential diagnostic and prognostic target.

4.
Int J Genomics ; 2023: 3914687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077303

RESUMO

Pancreatic adenocarcinoma (PAAD) is a malignancy with the highest mortality rate worldwide. There is a pressing need for novel biomarkers that can facilitate early detection and serve as targets for therapeutic interventions beyond the commonly utilized CA199 marker. This study utilized microarray datasets (GSE15471, GSE62165, and GSE28735) from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs) and construct a protein-protein interaction network using STRING and Cytoscape. Hub genes were selected using BiNGO. Expression profiles and clinical data from the Cancer Genome Atlas (TCGA) were then used to compare the expression levels of CTSK and PLAU in pancreatic cancer and healthy pancreatic tissues via the Wilcoxon rank-sum test, with further validation using qPCR. Functional enrichment analysis was conducted to explore potential signaling pathways and biological functions. Prognostic values were assessed by the Kaplan-Meier and Cox regression analyses, and an overall survival (OS) nomogram was created to predict 1-, 2-, and 3-year survival after cancer diagnosis. The infiltration of immune cells was evaluated by single-sample gene set enrichment analysis. The methylation status of both genes was analyzed using the UALCAN and MethSurv databases. The results demonstrated that CTSK and PLAU were overexpressed in pancreatic cancer and that the hypomethylation status of both genes was associated with a poor prognosis. The overexpression of both genes was positively correlated with various immune cells, and functional enrichment analysis revealed that they were associated with immune cell infiltration. Besides, the effects of PLAU on the migration and invasion of pancreatic cancer cells were also verified by scratch and transwell experiments. Consequently, CTSK and PLAU have potential as prognostic biomarkers for pancreatic cancer.

6.
Arch Biochem Biophys ; 748: 109783, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37816421

RESUMO

PURPOSE: Long non-coding RNA urothelial cancer associated 1 (UCA1) serves as an oncogene in various cancers. However, the mechanism underlying the role of UCA1 in pancreatic cancer remains unclear. This study aimed to explore the role of UCA1 in pancreatic cancer. METHODS: The expression and prognosis of UCA1 were analyzed using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The results were validated by immunohistochemistry (IHC) and qRT-PCR. The biofunctions of UCA1 were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The migration abilities and mitochondrial dynamics of PC cells were examined using the Transwell assay, mitochondrial membrane potential (MMP), and fluorescence. The mitochondrial-related protein and MAPK/ERK pathway markers were evaluated using western blotting. RESULTS: UCA1 expression was significantly higher in pancreatic cancer tissues than in normal tissues. High UCA1 expression indicated poor clinical outcomes and was associated with clinical features in patients with pancreatic cancer. Additionally, high UCA1 expression is a potential independent marker for poor prognosis. Subsequently, we demonstrated that UCA1 enhanced the migration capability, increased MMP, enhanced mitochondrial fusion, and inhibited mitochondrial autophagy in pancreatic cancer cells via the MAPK/ERK pathway. CONCLUSION: UCA1 promotes the migration by regulating the mitochondrial dynamics of pancreatic cancer cells via the MAPK/ERK pathway. Our findings suggest that UCA1 may serve as a potential biomarker in pancreatic cancer prognosis.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dinâmica Mitocondrial , Neoplasias da Bexiga Urinária/genética , Movimento Celular , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Neoplasias Pancreáticas
7.
Cancers (Basel) ; 15(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37370795

RESUMO

The tumor EMT is a crucial event in tumor pathogenesis and progression. Previous research has established MBD3's significant role in pancreatic cancer EMT. However, MBD3's precise role in colon cancer remains unclear and warrants further investigation. Pan-cancer analysis revealed MBD3's differential expression in various tumors and its significant association with tumor occurrence, growth, and progression. Moreover, analysis of single-cell sequencing and clinical data for colon cancer revealed MBD3 expression's negative correlation with clinical indicators such as survival prognosis. Functional enrichment analysis confirmed the association between MBD3 and EMT in colon cancer. Pathological examinations, western blotting, and qRT-PCR in vitro and in vivo validated MBD3's differential expression in colon cancer. Transwell, CCK-8, clone formation, and in vivo tumorigenesis experiments confirmed MBD3's impact on migration, invasion, and proliferation. Our findings demonstrate MBD3 as a potential prognostic marker and therapeutic target for colon cancer.

8.
Cell Cycle ; 22(12): 1514-1527, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37245082

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have been proved to play a vital role in pancreatic cancer (PC). However, the role of lncRNA FAM83A-AS1 in PC remains unclear. In this study, we explored the biological function and underlying mechanism of FAM83A-AS1 in PC cells. METHODS: The FAM83A-AS1 expression was assessed via public databases and validated by qRT-PCR. The biofunction and immune cell infiltration of FAM83A-AS1 were analyzed through GO, KEGG, GESA and ssGSEA. The migration, invasion and proliferation abilities of PC cells were examined by Transwell, wound healing, CCK8 and colony formation. The EMT and Hippo pathway markers were evaluated by western blot. RESULTS: FAM83A-AS1 expression was higher in PC tissues and cells than normal. Additionally, FAM83A-AS1 was associated with poor prognosis of PC and involved in cadherin binding and immune infiltration. Subsequently, we proved FAM83A-AS1 overexpression enhanced the migration, invasion and proliferation abilities of PC cells, whereas FAM83A-AS1 downregulation inhibited those. Moreover, western blot results showed that FAM83A-AS1 knockdown increased the E-cadherin expression and decreased the expression of N-cadherin, ß-catenin, Vimentin, Snail and Slug. On the contrary, FAM83A-AS1 upregulation results in the opposite effects. Besides, FAM83A-AS1 overexpression inhibited the expression of p-YAP, p-MOB1, p-Lats1, SAV1, MST1 and MST2 as well as the results of FAM83A-AS1 knockdown were opposite. CONCLUSION: FAM83A-AS1 promoted EMT of PC cells via Hippo signaling inactivation and may be a potential diagnosis and prognosis target.


Assuntos
Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Transição Epitelial-Mesenquimal/genética , RNA Longo não Codificante/metabolismo , Via de Sinalização Hippo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Neoplasias Pancreáticas/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas
9.
Int J Genomics ; 2022: 2723264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483329

RESUMO

The extensive morbidity of colorectal cancer (CRC) and the inferior prognosis of terminal CRC urgently call for reliable prognostic biomarkers. For this, we identified 704 differentially expressed genes (DEGs) by intersecting three datasets, GSE41328, GSE37364, and GSE15960 from Gene Expression Omnibus database, to maximize the accuracy of the results. Preliminary analysis of the DEGs was then performed using online gene analysis datasets, such as DAVID, UCSC Cancer Genome Browser, CBioPortal, STRING, and UCSC Cancer Genome Browser. Cytoscape was utilized to visualize the protein perception interaction network of DEGs, and the bubble map of GO and KEGG enrichment function was demonstrated using the R package. The Molecular Complex Detection (MCODE), Biological Network Gene Oncology (BiNGO) plug-in in Cytoscape, was applied to further screen the DEGs to obtain 15 seed genes, which were IL1RN, GALNT12, ADH6, SCN7A, CXCL1, FGF18, SOX9, ACACB, PRRX1, MZB1, SLC22A3, CNNM4, LY6E, IFITM2, and GDPD3. Among them, IL1RN, ADH6, SCN7A, ACACB, MZB1, and GDPD3 exhibited statistically significant survival differences, whereas limited studies were conducted in CRC. Based on the enrichment results of the "Gene Ontology"(GO) and "Kyoto Encyclopedia of Genes and genomes "(KEGG) as well as documented findings of key genes, we further emphasized the potential of IL1RN and PRRX1 as markers of immune infiltrates in CRC and confirmed our hypothesis by compiling data from the UALCAN, Tumor Immune Estimation Resource, and TISIDB databases for these two genes. The above-mentioned genes might offer a valuable insight into the diagnosis, immunotherapeutic targets, and prognosis of CRC.

10.
Front Oncol ; 12: 926230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875143

RESUMO

In modern society, inappropriate diets and other lifestyle habits have made obesity an increasingly prominent health problem. Pancreatic cancer (PC), a kind of highly aggressive malignant tumor, is known as a silent assassin and is the seventh leading cause of cancer death worldwide, pushing modern medicine beyond help. Adipokines are coming into notice because of the role of the intermediate regulatory junctions between obesity and malignancy. This review summarizes the current evidence for the relationship between highly concerning adipokines and the pathogenesis of PC. Not only are classical adipokines such as leptin and adiponectin included, but they also cover the recognized chemerin and osteopontin. Through a summary of the biological functions of these adipokines as well as their receptors, it was discovered that in addition to their basic function of stimulating the biological activity of tumors, more studies confirm that adipokines intervene in the progression of PC from the viewpoint of tumor metabolism, immune escape, and reprogramming of the tumor microenvironment (TME). Besides endocrine function, the impact of white adipose tissue (WAT)-induced chronic inflammation on PC is briefly discussed. Furthermore, the potential implication of the acknowledged endocrine behavior of brown adipose tissue (BAT) in relation to carcinogenesis is also explored. No matter the broad spectrum of obesity and the poor prognosis of PC, supplemental research is needed to unravel the detailed network of adipokines associated with PC. Exploiting profound therapeutic strategies that target adipokines and their receptors may go some way to improving the current worrying prognosis of PC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...