Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672852

RESUMO

Rose tea is a type of flower tea in China's reprocessed tea category, which is divided into seven grades, including super flower, primary flower, flower bud, flower heart, yellow flower, scattered flower, and waste flower. Grading rose tea into distinct quality levels is a practice that is essential to boosting their competitive advantage. Manual grading is inefficient. We provide a lightweight model to advance rose tea grading automation. Firstly, four kinds of attention mechanisms were introduced into the backbone and compared. According to the experimental results, the Convolutional Block Attention Module (CBAM) was chosen in the end due to its ultimate capacity to enhance the overall detection performance of the model. Second, the lightweight module C2fGhost was utilized to change the original C2f module in the neck to lighten the network while maintaining detection performance. Finally, we used the SIoU loss in place of the CIoU loss to improve the boundary regression performance of the model. The results showed that the mAP, precision (P), recall (R), FPS, GFLOPs, and Params values of the proposed model were 86.16%, 89.77%, 83.01%, 166.58, 7.978, and 2.746 M, respectively. Compared with the original model, the mAP, P, and R values increased by 0.67%, 0.73%, and 0.64%, the GFLOPs and Params decreased by 0.88 and 0.411 M, respectively, and the speed was comparable. The model proposed in this study also performed better than other advanced detection models. It provides theoretical research and technical support for the intelligent grading of roses.

2.
Talanta ; 273: 125892, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493609

RESUMO

In this study, NIR quantitative prediction model was established for sensory score and physicochemical components of different varieties and quality grades of Yuezhou Longjing tea. Firstly, L, a, b color factors and diffuse reflection spectral data are collected for each sample. Subsequently, the original spectrum is preprocessed. Three techniques for selecting variables, CARS, BOSS, and SPA, were utilized to extract optimal feature bands. Finally, the spectral data extracted from feature bands were fused with L, a and b color factors to build SVR and PLSR prediction models. enabling the rapid non-destructive discrimination of different varieties and grades of Yuezhou Longjing tea. The outcomes demonstrated that BOSS was the best variable selection technique for sensory score and the distinctive caffeine wavelengths, CARS, however, was the best variable selection technique for catechins distinctive wavelengths. Additionally, the middle-level data fusion-based non-linear prediction models greatly outperformed the linear prediction models. For the prediction models of sensory score, catechins, and caffeine, the relative percent deviation (RPD) values were 2.8, 1.6, and 2.6, respectively, suggesting the good predictive ability of the models. In conclusion, evaluating the quality of the five Yuezhou Longjing tea varieties using near-infrared spectroscopy and data fusion have proved as feasible.


Assuntos
Catequina , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Chá/química , Cafeína , Modelos Lineares , Algoritmos , Análise dos Mínimos Quadrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...