Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 22590, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585464

RESUMO

Health monitoring is critical for newborn animals due to their vulnerability to diseases. Urine can be not only a useful and non-invasive tool (free-catch samples) to reflect the physiological status of animals but also to help monitor the progression of diseases. Proteomics involves the study of the whole complement of proteins and peptides, including structure, quantities, functions, variations and interactions. In this study, urinary proteomics of neonatal donkeys were characterized and compared to the profiles of adult donkeys to provide a reference database for healthy neonatal donkeys. The urine samples were collected from male neonatal donkeys on their sixth to tenth days of life (group N) and male adult donkeys aging 4-6 years old (group A). Library-free data-independent acquisition (direct DIA) mass spectrometry-based proteomics were applied to analyze the urinary protein profiles. Total 2179 urinary proteins were identified, and 411 proteins were differentially expressed (P < 0.05) between the two groups. 104 proteins were exclusively expressed in group N including alpha fetoprotein (AFP), peptidase-mitochondrial processing data unit (PMPCB), and upper zone of growth plate and cartilage matrix associated (UCMA), which might be used to monitor the health status of neonatal donkeys. In functional analysis, some differentially expressed proteins were identified related to immune system pathways, which might provide more insight in the immature immunity of neonatal donkeys. To the best of our knowledge, this is the first time to report donkey urinary proteome and our results might provide reference for urinary biomarker discovery used to monitor and evaluate health status of neonatal donkeys.


Assuntos
Equidae , Proteômica , Animais , Masculino , Proteômica/métodos , Equidae/metabolismo , Espectrometria de Massas/métodos , Peptídeos , Proteoma/metabolismo
2.
Front Vet Sci ; 8: 645627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969039

RESUMO

Streptococcus equi subsp. equi (S. equi) is the pathogen causing strangles, a highly infectious disease that can affect equids including donkeys of all ages. It can persistently colonize the upper respiratory tract of animals asymptomatically for years, which serves as a source of infection. Several strangles outbreaks have been reported in the donkey industry in China in the last few years and pose a great threat to health, production, and the welfare of donkeys. Nasopharyngeal swab samples for culture and PCR are used widely in strangles diagnosis. Additionally, microbiomes within and on the body are essential to host homoeostasis and health. Therefore, the microbiome of the equid nasopharynx may provide insights into the health of the upper respiratory tract in animals. There has been no study investigating the nasopharyngeal microbiome in healthy donkeys, nor in donkeys shedding S. equi. This study aimed to compare nasopharyngeal microbiomes in healthy and carrier donkeys using 16S rRNA gene sequencing. Nasopharyngeal samples were obtained from 16 donkeys recovered from strangles (group S) and 14 healthy donkeys with no history of strangles exposure (group H). Of those sampled, 7 donkeys were determined to be carriers with positive PCR and culture results in group S. In group H, all 14 donkeys were considered free of strangles based on the history of negative exposure, negative results of PCR and culture. Samples from these 21 donkeys were used for microbial analysis. The nasopharyngeal microbiome composition was compared between the two groups. At the phylum level, relative abundance of Proteobacteria was predominantly higher in the S. equi carrier donkeys than in healthy donkeys (P < 0.01), while Firmicutes and Actinobacteria were significantly less abundant in the S. equi carrier donkeys than in healthy donkeys (P < 0.05). At the genus level, Nicoletella was detected in the upper respiratory tract of donkeys for the first time and dominated in carrier donkeys. It is suspected to suppress other normal flora of URT microbiota including Streptococcus spp., Staphylococcus spp., and Corynebacterium spp. We concluded that the nasopharyngeal microbiome in S. equi carrier donkeys still exhibited microbial dysbiosis, which might predispose them to other airway diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...