Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 186, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167864

RESUMO

Adipose tissue stores triacylglycerol (TAG) in lipid droplets (LD) and release fatty acids upon lipolysis during energy shortage. We identify ApoL6 as a LD-associated protein mainly found in adipose tissue, specifically in adipocytes. ApoL6 expression is low during fasting but induced upon feeding. ApoL6 knockdown results in smaller LD with lower TAG content in adipocytes, while ApoL6 overexpression causes larger LD with higher TAG content. We show that the ApoL6 affects adipocytes through inhibition of lipolysis. While ApoL6, Perilipin 1 (Plin1), and HSL can form a complex on LD, C-terminal ApoL6 directly interacts with N-terminal Plin1 to prevent Plin1 binding to HSL, to inhibit lipolysis. Thus, ApoL6 ablation decreases white adipose tissue mass, protecting mice from diet-induced obesity, while ApoL6 overexpression in adipose brings obesity and insulin resistance, making ApoL6 a potential future target against obesity and diabetes.


Assuntos
Gotículas Lipídicas , Lipólise , Animais , Camundongos , Gotículas Lipídicas/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Perilipina-1/genética , Perilipina-1/metabolismo
2.
Dev Cell ; 56(10): 1437-1451.e3, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33878347

RESUMO

Adipose tissue mass and adiposity change throughout the lifespan. During aging, while visceral adipose tissue (VAT) tends to increase, peripheral subcutaneous adipose tissue (SAT) decreases significantly. Unlike VAT, which is linked to metabolic diseases, including type 2 diabetes, SAT has beneficial effects. However, the molecular details behind the aging-associated loss of SAT remain unclear. Here, by comparing scRNA-seq of total stromal vascular cells of SAT from young and aging mice, we identify an aging-dependent regulatory cell (ARC) population that emerges only in SAT of aged mice and humans. ARCs express adipose progenitor markers but lack adipogenic capacity; they secrete high levels of pro-inflammatory chemokines, including Ccl6, to inhibit proliferation and differentiation of neighboring adipose precursors. We also found Pu.1 to be a driving factor for ARC development. We identify an ARC population and its capacity to inhibit differentiation of neighboring adipose precursors, correlating with aging-associated loss of SAT.


Assuntos
Adipogenia , Envelhecimento/fisiologia , Gordura Subcutânea/citologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Antígenos CD36/metabolismo , Proliferação de Células , Quimiocinas/metabolismo , Galectina 3/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco/citologia , Transativadores/metabolismo
3.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107819

RESUMO

Brown adipose tissue is a metabolically beneficial organ capable of dissipating chemical energy into heat, thereby increasing energy expenditure. Here, we identify Dot1l, the only known H3K79 methyltransferase, as an interacting partner of Zc3h10 that transcriptionally activates the Ucp1 promoter and other BAT genes. Through a direct interaction, Dot1l is recruited by Zc3h10 to the promoter regions of thermogenic genes to function as a coactivator by methylating H3K79. We also show that Dot1l is induced during brown fat cell differentiation and by cold exposure and that Dot1l and its H3K79 methyltransferase activity is required for thermogenic gene program. Furthermore, we demonstrate that Dot1l ablation in mice using Ucp1-Cre prevents activation of Ucp1 and other target genes to reduce thermogenic capacity and energy expenditure, promoting adiposity. Hence, Dot1l plays a critical role in the thermogenic program and may present as a future target for obesity therapeutics.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Metabolismo Energético , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Metilação , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Desacopladora 1/genética
4.
Cell Rep ; 29(9): 2621-2633.e4, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775033

RESUMO

Brown adipose tissue harbors UCP1 to dissipate chemical energy as heat. However, the transcriptional network that governs the thermogenic gene program is incompletely understood. Zc3h10, a CCCH-type zinc finger protein, has recently been reported to bind RNA. However, we report here that Zc3h10 functions as a transcription factor to activate UCP1 not through the enhancer region, but by binding to a far upstream region of the UCP1 promoter. Upon sympathetic stimulation, Zc3h10 is phosphorylated at S126 by p38 mitogen-activated protein kinase (MAPK) to increase binding to the distal region of the UCP1 promoter. Zc3h10, as well as mutant Zc3h10, which cannot bind RNA, enhances thermogenic capacity and energy expenditure, protecting mice from diet-induced obesity. Conversely, Zc3h10 ablation in UCP1+ cells in mice impairs thermogenic capacity and lowers oxygen consumption, leading to weight gain. Hence, Zc3h10 plays a critical role in the thermogenic gene program and may present future targets for obesity therapeutics.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas de Transporte/genética , Termogênese/genética , Fatores de Transcrição/metabolismo , Animais , Humanos , Camundongos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...