Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 9(1): e10602, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193116

RESUMO

The majority of adoptive cellular therapies are produced from peripheral mononuclear cells obtained via leukapheresis and further enriched for the cells of interest (e.g., T cells). Here, we present a first-of-its-kind closed system, which effectively removes ~85% of monocytes and ~88% of platelets, while recovering ~88% of concentrated T cells in a separate output stream, as the leukapheresis sample flows through a microfluidic device at 5 mL/min. The system is driven by a common peristaltic pump, enabled by a novel pressure wave dampener, and operates in a closed bag-to-bag configuration, without requiring any specialized, dedicated equipment. When compared to standard density gradient centrifugation on paired samples, the new system demonstrated a 1.5-fold increase in T cell recovery and a 2-fold reduction in inter-sample variability for this separation outcome. The T cell-to-monocyte ratio of the leukapheresis sample was increased to 20:1, whereas with density gradient processing it decreased to 2:1. As a result of superior purity and/or gentler processing, T cells enriched by the system showed a 2.7-times higher fold expansion during subsequent culture, and an overall 3.5-times higher cumulative yield. This centrifugation-free and label-free closed system for enriching lymphocytes could significantly simplify and standardize the manufacturing of life-saving cellular therapies.

2.
Lab Chip ; 24(4): 913-923, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38263850

RESUMO

The significant biological and functional differences between small and large platelets suggested by recent studies could have profound implications for transfusion medicine. However, investigating the relationship between platelet size and function is challenging because separating platelets by size without affecting their properties is difficult. A standard approach is centrifugation, but it inevitably leads to premature activation and aggregation of separated platelets. This paper describes the development and validation of a microfluidic device based on controlled incremental filtration (CIF) for separating platelets by size without the cell damage and usability limitations associated with centrifugation. Platelet samples derived from whole blood were used to evaluate the dependence of the CIF device separation performance on design parameters and flow rate, and to compare the properties of PLT fractions generated by the CIF device with those produced using a centrifugation protocol in a split-sample study. This was accomplished by quantifying the platelet size distribution, mean platelet volume (MPV), platelet-large cell ratio (P-LCR) and platelet activation before and after processing for all input and output samples. The 'large platelet' fractions produced by the CIF device and the centrifugation protocol were essentially equivalent (no significant difference in MPV and P-LCR). Platelets in the 'small platelet' fraction produced by the CIF device were significantly smaller than those produced by centrifugation (lower MPV and P-LCR). This was because the CIF 'small platelet' fraction was contaminated by much fewer large platelets (∼2-times lower recovery of >12 fL platelets) and retained the smallest platelets that were discarded by the centrifugation protocol. There was no significant difference in platelet activation between the two methods. However, centrifugation required a substantial amount of additional anticoagulant to prevent platelet aggregation during pelleting. Unlike centrifugation, the CIF device offered continuous, flow-through, single-step processing that did not cause platelet aggregation. Such a capability has the potential to accelerate the basic studies of the relationship between platelet size and function, and ultimately improve transfusion practice, particularly in the pediatric setting, where the need for low-volume, high-quality platelet transfusions is most urgent.


Assuntos
Plaquetas , Agregação Plaquetária , Humanos , Criança , Centrifugação , Filtração , Dispositivos Lab-On-A-Chip , Separação Celular/métodos
3.
Lab Chip ; 23(7): 1804-1815, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36723024

RESUMO

The isolation of a specific lymphocyte subset from blood is the required first step in the manufacturing of many novel cellular immunotherapies. Microfluidic size-based separation methods are poised to significantly simplify this process because they require neither centrifugation nor magnetic or fluorescent labeling to operate. Lymphocytes can be separated from red blood cells (RBCs) and platelets as well as monocytes and granulocytes because their size differs from each of these cell types. However, further separation of a specific lymphocyte subset from other unwanted lymphocytes using size-based methods is impossible because all lymphocytes have approximately the same size and can only be distinguished by surface markers. This paper describes a new approach that made it possible for a size-based separation method to isolate a desired subset of lymphocytes by making unwanted lymphocytes as well as other blood cells artificially larger. The separation was enabled by selectively binding multiple RBCs to each unwanted cell to create 'rosettes' with an effective size significantly larger than the diameter of a typical lymphocyte. The desired lymphocytes remained unaffected by rosetting and were separated from the rosettes by passing the mixture through a microfluidic size-based separation device based on controlled incremental filtration (CIF). This new rosette-enabled size-based (RESIZE) separation approach demonstrated recovery of 80-90% for all lymphocyte subsets tested (CD3+, CD4+, CD56+) which was ∼2.5-fold higher than that for the standard immunodensity method (RBC rosetting followed by density gradient centrifugation). The purity of separation was >90% for CD3+ cells but declined with increasing cell rarity. Unlike the immunodensity approach, RESIZE required neither centrifugation nor cell washing after the separation and was ∼2.5-fold faster when processing the same sample volume. The results of this study suggest that integration of the RESIZE approach for high-yield isolation of lymphocyte subsets from blood could significantly streamline the manufacturing workflow and thus have a potentially transformative impact on the cost and availability of novel cellular immunotherapies.


Assuntos
Eritrócitos , Linfócitos , Separação Celular/métodos , Subpopulações de Linfócitos , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...