Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35629818

RESUMO

Extracorporeal membrane oxygenation (ECMO) has become an important therapeutic approach in the COVID-19 pandemic. The development and research in this field strongly relies on animal models; however, efforts are being made to find alternatives. In this work, we present a new mock circuit for ECMO that allows measurements of the oxygen transfer rate of a membrane lung at full ECMO blood flow. The mock utilizes a large reservoir of heparinized porcine blood to measure the oxygen transfer rate of the membrane lung in a single passage. The oxygen transfer rate is calculated from blood flow, hemoglobin value, venous saturation, and post-membrane arterial oxygen pressure. Before the next measuring sequence, the blood is regenerated to a venous condition with a sweep gas of nitrogen and carbon dioxide. The presented mock was applied to investigate the effect of a recirculation loop on the oxygen transfer rate of an ECMO setup. The recirculation loop caused a significant increase in post-membrane arterial oxygen pressure (paO2). The effect was strongest for the highest recirculation flow. This was attributed to a smaller boundary layer on gas fibers due to the increased blood velocity. However, the increase in paO2 did not translate to significant increases in the oxygen transfer rate because of the minor significance of physically dissolved oxygen for gas transfer. In conclusion, our results regarding a new ECMO mock setup demonstrate that recirculation loops can improve ECMO performance, but not enough to be clinically relevant.

2.
Cell Tissue Res ; 389(1): 85-98, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35475923

RESUMO

Interleukin 23 and the interleukin 23 receptor (IL-23-IL23R) are described as the major enhancing factors for Interleukin 17 (IL-17) in allergic airway inflammation. IL-17 is considered to induce neutrophilic inflammation in the lung, which is often observed in severe, steroid-resistant asthma-phenotypes. For that reason, understanding of IL-23 and IL-17 axis is very important for future therapy strategies, targeting neutrophil pathway of bronchial asthma.This study aimed to investigate the distribution and expression of IL-23R under physiological and inflammatory conditions. Therefore, a house dust mite (HDM) model of allergic airway inflammation was performed by treating mice with HDM intranasally. Immunofluorescence staining with panel of antibodies was performed in lung tissues to examine the macrophage, dendritic cell, and T cell subpopulations. The allergic airway inflammation was quantified by histopathological analysis, ELISA measurements, and airway function.HDM-treated mice exhibited a significant allergic airway inflammation including higher amounts of NE+ cells in lung parenchyma. We found only a small amount of IL-23R positives, out of total CD3+T cells, and no upregulation in HDM-treated animals. In contrast, the populations of F4/80+ macrophages and CD11c+F4/80- dendritic cells (DCs) with IL-23R expression were found to be higher. But HDM treatment leads to a significant increase of IL-23R+ macrophages, only. IL-23R was expressed by every examined macrophage subpopulation, whereas only Mϕ1 and hybrids between Mϕ1 and Mϕ2 phenotype and not Mϕ2 were found to upregulate IL-23R. Co-localization of IL-23R and IL-17 was only observed in F4/80+ macrophages, suggesting F4/80+ macrophages express IL-23R along with IL-17 in lung tissue.The study revealed that macrophages involving the IL-23 and IL-17 pathway may provide a potential interesting therapeutic target in neutrophilic bronchial asthma.


Assuntos
Asma , Interleucina-17 , Animais , Asma/patologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Interleucina-17/metabolismo , Interleucina-23/genética , Interleucina-23/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Camundongos , Pyroglyphidae , Receptores de Interleucina , Regulação para Cima
3.
Membranes (Basel) ; 11(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072067

RESUMO

Extracorporeal carbon dioxide removal (ECCO2R) is an important technique to treat critical lung diseases such as exacerbated chronic obstructive pulmonary disease (COPD) and mild or moderate acute respiratory distress syndrome (ARDS). This study applies our previously presented ECCO2R mock circuit to compare the CO2 removal capacity of circular versus parallel-plated membrane lungs at different sweep gas flow rates (0.5, 2, 4, 6 L/min) and blood flow rates (0.3 L/min, 0.9 L/min). For both designs, two low-flow polypropylene membrane lungs (Medos Hilte 1000, Quadrox-i Neonatal) and two mid-flow polymethylpentene membrane lungs (Novalung Minilung, Quadrox-iD Pediatric) were compared. While the parallel-plated Quadrox-iD Pediatric achieved the overall highest CO2 removal rates under medium and high sweep gas flow rates, the two circular membrane lungs performed relatively better at the lowest gas flow rate of 0.5 L/min. The low-flow Hilite 1000, although overall better than the Quadrox i-Neonatal, had the most significant advantage at a gas flow of 0.5 L/min. Moreover, the circular Minilung, despite being significantly less efficient than the Quadrox-iD Pediatric at medium and high sweep gas flow rates, did not show a significantly worse CO2 removal rate at a gas flow of 0.5 L/min but rather a slight advantage. We suggest that circular membrane lungs have an advantage at low sweep gas flow rates due to reduced shunting as a result of their fiber orientation. Efficiency for such low gas flow scenarios might be relevant for possible future portable ECCO2R devices.

4.
Intensive Care Med Exp ; 8(1): 52, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915322

RESUMO

BACKGROUND: Extracorporeal carbon dioxide removal (ECCO2R) is a promising yet limited researched therapy for hypercapnic respiratory failure in acute respiratory distress syndrome and exacerbated chronic obstructive pulmonary disease. Herein, we describe a new mock circuit that enables experimental ECCO2R research without animal models. In a second step, we use this model to investigate three experimental scenarios of ECCO2R: (I) the influence of hemoglobin concentration on CO2 removal. (II) a potentially portable ECCO2R that uses air instead of oxygen, (III) a low-flow ECCO2R that achieves effective CO2 clearance by recirculation and acidification of the limited blood volume of a small dual lumen cannula (such as a dialysis catheter). RESULTS: With the presented ECCO2R mock, CO2 removal rates comparable to previous studies were obtained. The mock works with either fresh porcine blood or diluted expired human packed red blood cells. However, fresh porcine blood was preferred because of better handling and availability. In the second step of this work, hemoglobin concentration was identified as an important factor for CO2 removal. In the second scenario, an air-driven ECCO2R setup showed only a slightly lower CO2 wash-out than the same setup with pure oxygen as sweep gas. In the last scenario, the low-flow ECCO2R, the blood flow at the test membrane lung was successfully raised with a recirculation channel without the need to increase cannula flow. Low recirculation ratios resulted in increased efficiency, while high recirculation ratios caused slightly reduced CO2 removal rates. Acidification of the CO2 depleted blood in the recirculation channel caused an increase in CO2 removal rate. CONCLUSIONS: We demonstrate a simple and cost effective, yet powerful, "in-vitro" ECCO2R model that can be used as an alternative to animal experiments for many research scenarios. Moreover, in our approach parameters such as hemoglobin level can be modified more easily than in animal models.

5.
Respir Res ; 21(1): 168, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616045

RESUMO

BACKGROUND: Titanium dioxide nanoparticles (TiO2 NPs) have a wide range of applications in several industrial and biomedical domains. Based on the evidence, the workers exposed to inhaled nanosized TiO2 powder are more susceptible to the risks of developing respiratory diseases. Accordingly, this issue has increasingly attracted the researchers' interest in understanding the consequences of TiO2 NPs exposure. Regarding this, the present study was conducted to analyze the local effects of TiO2 NPs on allergic airway inflammation and their uptake in a mouse model of ovalbumin (OVA)-induced allergic airway inflammation. METHODS: For the purpose of the study, female BALB/c mice with or without asthma were intranasally administered with TiO2 NPs. The mice were subjected to histological assessment, lung function testing, scanning electron microscopy (SEM), inductively coupled plasma mass spectrometry (ICP-MS), and NP uptake measurement. In addition, T helper (Th) 1/Th2 cytokines were evaluated in the lung homogenate using the enzyme-linked immunosorbent assay. RESULTS: According to the results, the mice receiving OVA alone or OVA plus TiO2 NPs showed eosinophilic infiltrates and mucus overproduction in the lung tissues, compared to the controls. Furthermore, a significant elevation was observed in the circulating Th2 cytokines, including interleukin (IL)-4, IL-5, and IL-13 after NP exposure. The TiO2 NPs were taken up by alveolar macrophages at different time points. As the results of the SEM and ICP-MS indicated, TiO2 NPs were present in most of the organs in both asthmatic and non-asthmatic mice. CONCLUSION: Based on the findings of the current study, intranasally or inhalation exposure to high-dose nanosized TiO2 particles appears to exacerbate the allergic airway inflammation and lead to systemic uptake in extrapulmonary organs. These results indicate the very important need to investigate the upper limit of intranasally or inhalation exposure to nanosized TiO2 particles in occupational and environmental health policy.


Assuntos
Asma/induzido quimicamente , Asma/patologia , Nanopartículas/toxicidade , Titânio/toxicidade , Administração Intranasal , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Eosinófilos/imunologia , Feminino , Exposição por Inalação , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Ovalbumina/imunologia , Testes de Função Respiratória , Linfócitos T Auxiliares-Indutores/metabolismo , Titânio/administração & dosagem
6.
Artigo em Inglês | MEDLINE | ID: mdl-29436157

RESUMO

Since their introduction in 1980, the number of advanced targeted nanocarrier systems has grown considerably. Nanocarriers capable of targeting single receptors, multiple receptors, or multiple epitopes have all been used to enhance delivery efficiency and selectivity. Despite tremendous progress, preclinical studies and clinically translatable nanotechnology remain disconnected. The disconnect in targeting efficacy may stem from poorly-understood factors such as receptor clustering, spatial control of targeting ligands, ligand mobility, and ligand architecture. Further, the relationship between receptor distribution and ligand architecture remains elusive. Traditionally, targeted nanocarriers were engineered assuming a "static" target. However, it is becoming increasingly clear that receptor expression patterns change in response to external stimuli and disease progression. Here, we discuss how cutting-edge technologies will enable a better characterization of the spatiotemporal distribution of membrane receptors and their clustering. We further describe how this will enable the design of new nanocarriers that selectively target the site of disease. Ultimately, we explore how the precision engineering of targeted nanocarriers that adapt to receptor dynamics will have the potential to drive nanotechnology to the forefront of therapy and make targeted nanomedicine a clinical reality. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.

7.
Artigo em Inglês | MEDLINE | ID: mdl-28536677

RESUMO

Many bacteria regulate the expression of virulence factors via carbon catabolite responsive elements. In Gram-positive bacteria, the predominant mediator of carbon catabolite repression is the catabolite control protein A (CcpA). Hyperglycemia is a widespread disorder that predisposes individuals to an array of symptoms and an increased risk of infections. In hyperglycemic individuals, the bacterium Staphylococcus aureus causes serious, life-threatening infections. The importance of CcpA in regulating carbon catabolite repression in S. aureus suggests it may be important for infections in hyperglycemic individuals. To test this suggestion, hyperglycemic non-obese diabetic (NOD; blood glucose level ≥20 mM) mice were challenged with the mouse pathogenic S. aureus strain Newman and the isogenic ccpA deletion mutant (MST14), and the effects on infectivity were determined. Diabetic NOD mice challenged with the ccpA deletion mutant enhanced the symptoms of infection in an acute murine pneumonia model relative to the parental strain. Interestingly, when diabetic NOD mice were used in footpad or catheter infection models, infectivity of the ccpA mutant decreased relative to the parental strain. These differences greatly diminished when normoglycemic NOD mice (blood glucose level ≤ 10 mM) were used. These data suggest that CcpA is important for infectivity of S. aureus in hyperglycemic individuals.


Assuntos
Infecções Estafilocócicas/microbiologia , Proteína Estafilocócica A/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Glicemia/análise , Carbono/metabolismo , Citocinas/sangue , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Hemólise/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Obesos , Proteínas Repressoras/genética , Proteínas Repressoras/farmacologia , Proteína Estafilocócica A/genética , Fatores de Virulência
8.
Cell Tissue Res ; 369(2): 331-340, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28343320

RESUMO

Mast cells (MCs) and airway nerves play an important role in allergic asthma. However, little is known about the MCs and their interaction with airway nerves during allergic airway inflammation. This study aims to investigate the distribution and proliferation of MC populations in different lung compartments, along with the association of mast cells with nerve endings, using a house dust mite (HDM) model for allergic airway inflammation. BALB/c mice were exposed to HDM extract intranasally (25 µg/50 µl) for 5 consecutive days a week over 7 weeks. Immunofluorescence and Edu stains were used to examine the colocalisation of MCs and nerves and the proliferation of MCs, respectively. HDM treatment caused an increased migration of MCs into bronchi, alveolar parenchyma and airway vessels. The proportions of tryptase-chymase expressing MC (MCTC) increased significantly in the bronchi and the alveolar parenchyma but not in the vascular tissues, by allergic airway inflammation. The association of MCs with nerves was found only in the bronchi and there were no changes in comparison of controls to HDM-treated animals. The present study shows a strong migration of tryptase expressing MC (MCT) and MCTC into the bronchi and the alveolar parenchyma, as well as of MCT in the vascular compartment under HDM treatment. This supports the hypothesis that these mast cell populations may contribute to allergic airway inflammation.


Assuntos
Movimento Celular , Hipersensibilidade/patologia , Inflamação/patologia , Pulmão/patologia , Animais , Proliferação de Células , Feminino , Hipersensibilidade/parasitologia , Pulmão/inervação , Pulmão/parasitologia , Camundongos Endogâmicos BALB C , Tecido Nervoso/patologia , Pyroglyphidae/fisiologia
9.
Neuroimmunomodulation ; 24(6): 331-340, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29680839

RESUMO

OBJECTIVE: The chemokine CXCL12 interacting with the CXC receptor 4 (CXCR4) has been reported to play a role in the development and progression of bronchial asthma, but its mechanism of action is still unknown. The objective of this study was to assess the effect of the CXCL12 neutraligand chalcone 4 on the migration of dendritic cells (DCs) in a murine model of allergic airway inflammation. METHODS: A 21-day ovalbumin (OVA)-induced allergic-airway TH2 inflammation model in BALB/c mice was used. Four groups were sensitized with OVA adsorbed on alum and challenged either with OVA or saline for 4 days. Mice were treated intranasally with chalcone 4 (300 nmol/kg body weight) or solvent 2 h before each OVA or saline challenge; 24 h after the last challenge, CD11c+F4/80- DCs were counted in the bronchoalveolar lavage. Jugular-nodose ganglion complex (JNC) sections were sampled, and for immunofluorescence staining, cryocut sections were prepared. MHC II+F4/80- DCs as well as calcitonin gene-related peptide (CGRP)- and substance P (SP)-positive neuronal cell bodies were analyzed. RESULTS: In OVA-challenged mice, chalcone 4 caused a significantly decreased DC/neuron ratio in the JNC from 51.7% in solvent-treated to 32.6% in chalcone 4-treated mice. In parallel, chalcone 4 also decreased the DC population in BALF from 11.5 × 103 cells in solvent to 4.5 × 103 cells in chalcone 4-treated mice. By contrast, chalcone 4 had no effect on the expression of the neuropeptides CGRP and SP in JNC. CONCLUSION: This study reported the CXCL12 neutraligand chalcone 4 to affect DC infiltration into the airways and airway ganglia as well as to decrease airway eosinophilic inflammation and, therefore, validated CXCL12 as a new target in allergic disease models of asthma.


Assuntos
Asma/imunologia , Movimento Celular/imunologia , Chalcona/farmacologia , Quimiocina CXCL12/farmacologia , Células Dendríticas/imunologia , Gânglio Nodoso/imunologia , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Chalcona/uso terapêutico , Quimiocina CXCL12/uso terapêutico , Células Dendríticas/efeitos dos fármacos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Gânglio Nodoso/citologia , Gânglio Nodoso/efeitos dos fármacos , Ovalbumina/toxicidade
10.
Neuroimmunomodulation ; 23(5-6): 261-270, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28030866

RESUMO

OBJECTIVES: Mast cells (MCs) and nerves play an important role in allergic rhinitis (AR), but little is known about their crosstalk in AR. The aim of this study was to investigate MC-nerve interaction in the human nasal mucosa during AR. METHODS: The association between MCs and nerves, the expression of neuropeptide receptors (neurokinin 1 receptor [NK1R], neurokinin 2 receptor [NK2R], calcitonin gene-related peptide receptor [CGRPR], and MrgX2) on MCs, and protease-activated receptor 2 (PAR2) and tyrosine receptor kinase A (TrkA) on nerve fibres in the human nasal mucosa were investigated with immunofluorescence and real-time PCR. RESULTS: The association between MCs and nerves was found to be significantly increased, although the numbers of MCs and nerve fibres were unchanged during AR. MCs expressing tryptase-chymase (MCtc) were frequently associated with nerve fibres and these contacts increased significantly in AR. Neuropeptide receptors NK1R, NK2R, and CGRPR were firstly found to be largely localised on MCs. The number of MCs expressing NK1R and NK2R, but not CGRPR, was significantly increased in AR. Interestingly, MCtc mostly expressed these neuropeptide receptors. The newly discovered tachykinin receptor MrgX2 was not expressed on nasal MCs, but was expressed on gland cells and increased in AR. Additionally, tachykinergic nerve fibres were found to express PAR2 or TrkA as receptors for MCs. CONCLUSIONS: This study revealed for the first time an increase of MC-nerve association and neuropeptide receptor expression on MCs during AR as well as nerve fibres containing receptors for MCs. These results suggest that targeting or controlling airway sensory nerve function as a modulator of MCs may prevent allergic airway inflammation such as AR.


Assuntos
Mastócitos/metabolismo , Mucosa Nasal/inervação , Fibras Nervosas/metabolismo , Receptores de Neuropeptídeos/metabolismo , Rinite Alérgica/patologia , Adolescente , Adulto , Quimases/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores da Neurocinina-1/metabolismo , Receptores da Neurocinina-2/metabolismo , Receptores de Neuropeptídeos/genética , Substância P/metabolismo , Fatores de Transcrição/metabolismo , Triptases/metabolismo , Ubiquitina Tiolesterase/metabolismo , Adulto Jovem
11.
Neuroimmunomodulation ; 23(1): 18-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26444004

RESUMO

OBJECTIVES: Our previous data demonstrated that allergic airway inflammation induces migration of dendritic cells (DC) into airway sensory jugular and nodose ganglia (jugular-nodose ganglion complex; JNC). Here we investigated the effects of steroid treatment regarding the expression and migration of DC and calcitonin gene-related peptide (CGRP)-immunoreactive neurons of vagal sensory ganglia during allergic airway inflammation. METHODS: A house dust mite (HDM) model for allergic airway inflammation was used. The mice received 0.3 mg fluticasone propionate per kilogram of body weight in the last 9 days. JNC slices were analyzed on MHC II, the neuronal marker PGP9.5, and the neuropeptide CGRP. RESULTS: Allergic airway inflammation increased the numbers of DC and CGRP-expressing neurons in the JNC significantly in comparison to the controls (DC/neurons: HDM 44.58 ± 1.6% vs. saline 33.29 ± 1.6%, p < 0.05; CGRP-positive neurons/total neurons: HDM 30.65 ± 1.9% vs. saline 19.49 ± 2.3%, p < 0.05). Steroid treatment did not have any effect on the numbers of DC and CGRP-expressing neurons in the JNC compared to HDM-treated mice. CONCLUSIONS: The present findings indicate an important role of DC and CGRP-containing neurons in the pathogenesis of allergic airway inflammation. However, steroid treatment did not have an effect on the population of DC and neurons displaying CGRP in the JNC, whereas steroid treatment was found to suppress allergic airway inflammation.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Dendríticas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gânglio Nodoso/patologia , Hipersensibilidade Respiratória , Esteroides/uso terapêutico , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Fluticasona/toxicidade , Antígenos de Histocompatibilidade Classe II/metabolismo , Técnicas In Vitro , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/patologia , Ubiquitina Tiolesterase/metabolismo
12.
Respir Res ; 16: 64, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26021823

RESUMO

Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.


Assuntos
Pneumopatias/terapia , Nanotecnologia/tendências , Pneumologia/tendências , Animais , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Técnicas de Transferência de Genes/tendências , Humanos , Pneumopatias/genética , Nanofibras/administração & dosagem , Nanopartículas/administração & dosagem , Nanotecnologia/métodos , Estrutura Secundária de Proteína , Pneumologia/métodos , Medicamentos para o Sistema Respiratório/administração & dosagem
13.
Int J Genomics ; 2015: 638032, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811019

RESUMO

Asthma is the consequence of allergic inflammation in the lung compartments and lung-draining lymph nodes. Dendritic cells initiate and promote T cell response and drive it to immunity or allergy. However, their modes of action during asthma are poorly understood. In this study, an allergic inflammation with ovalbumin was induced in 38 mice versus 42 control animals. After ovalbumin aerosol challenge, conventional dendritic cells (CD11c/MHCII/CD8) were isolated from the lungs and the draining lymph nodes by means of magnetic cell sorting followed by fluorescence-activated cell sorting. A comparative transcriptional analysis was performed using gene arrays. In general, many transcripts are up- and downregulated in the CD8(-) dendritic cells of the allergic inflamed lung tissue, whereas few genes are regulated in CD8(+) dendritic cells. The dendritic cells of the lymph nodes also showed minor transcriptional changes. The data support the relevance of the CD8(-) conventional dendritic cells but do not exclude distinct functions of the small population of CD8(+) dendritic cells, such as cross presentation of external antigen. So far, this is the first approach performing gene arrays in dendritic cells obtained from lung tissue and lung-draining lymph nodes of asthmatic-like mice.

14.
Exp Toxicol Pathol ; 67(3): 261-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25601416

RESUMO

Abundant microbial colonization is a hallmark of COPD and smoke exposure likely increases the susceptibility to colonization and infection. The aim of the present study was to characterize the pulmonary changes of a combined exposure to cigarette smoke (CS) and microbial challenge in a preclinical murine COPD model. Animals were exposed to CS for 2 weeks, 3, and 6 months. Low and high doses of heat inactivated nontypeable Haemophilus influenzae (NTHi) were administered by inhalation during the whole exposure time. Pulmonary changes were analyzed by stereology, pulmonary function tests, measurements of inflammatory cells and mediators, and histopathology. Exposure of smoke in a relatively low concentration caused COPD-like changes of pulmonary function and only little inflammation. The coadministration of low dose NTHi (ld-NTHi) augmented a macrophage dominated inflammatory profile, while high dose NTHi (hd-NTHi) induced a neutrophilic inflammatory pattern. IL-17A secretion was solely dependent on the exposure to NTHi. Also goblet cell metaplasia and the formation of lymphoid aggregates depended on exposure to bacteria. In conclusion, the combination of exposure to smoke and bacterial compounds resulted in a mouse model that resembles several aspects of human disease. Exposure to microbial structural components appears necessary to model important pathologic features of the disease and the quantity of the exposure with microorganisms has a strong effect on the phenotype.


Assuntos
Modelos Animais de Doenças , Infecções por Haemophilus/complicações , Nicotiana , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Fumaça , Animais , Feminino , Haemophilus influenzae , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
15.
Int Arch Allergy Immunol ; 168(4): 241-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26895179

RESUMO

Bronchial asthma is a heterogeneous, complex, chronic inflammatory and obstructive pulmonary disease driven by various pathways to present with different phenotypes. A small proportion of asthmatics (5-10%) suffer from severe asthma with symptoms that cannot be controlled by guideline therapy with high doses of inhaled steroids plus a second controller, such as long-acting ß2 agonists (LABA) or leukotriene receptor antagonists, or even systemic steroids. The discovery and characterization of the pathways that drive different asthma phenotypes have opened up new therapeutic avenues for asthma treatment. The approval of the humanized anti-IgE antibody omalizumab for the treatment of severe allergic asthma has paved the way for other cytokine-targeting therapies, particularly those targeting interleukin (IL)-4, IL-5, IL-9, IL-13, IL-17, and IL-23 and the epithelium-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin. Knowledge of the molecular basis of asthma phenotypes has helped, and continues to help, the development of novel biologicals that target a diverse array of phenotype-specific molecular targets in patients suffering from severe asthma. This review summarizes potential therapeutic approaches that are likely to show clinical efficacy in the near future, focusing on biologicals as promising novel therapies for severe asthma.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Interleucinas/antagonistas & inibidores , Omalizumab/uso terapêutico , Antiasmáticos/isolamento & purificação , Antiasmáticos/metabolismo , Asma/imunologia , Asma/patologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Ensaios Clínicos como Assunto , Citocinas/antagonistas & inibidores , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Imunoglobulina E/sangue , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/patologia , Omalizumab/isolamento & purificação , Omalizumab/metabolismo , Fenótipo , Índice de Gravidade de Doença , Linfopoietina do Estroma do Timo
16.
Respir Res ; 15: 73, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24980659

RESUMO

BACKGROUND: A neuroimmune crosstalk between dendritic cells (DCs) and airway nerves in the lung has recently been reported. However, the presence of DCs in airway sensory ganglia under normal and allergic conditions has not been explored so far. Therefore, this study aims to investigate the localisation, distribution and proliferation of DCs in airway sensory ganglia under allergic airway inflammation. METHODS: Using the house dust mite (HDM) model for allergic airway inflammation BALB/c mice were exposed to HDM extract intranasally (25 µg/50 µl) for 5 consecutive days a week over 7 weeks. With the help of the immunohistochemistry, vagal jugular-nodose ganglia complex (JNC) sections were analysed regarding their expression of DC-markers (MHC II, CD11c, CD103), the neuronal marker PGP 9.5 and the neuropeptide calcitonin gene-related peptide (CGRP) and glutamine synthetase (GS) as a marker for satellite glia cells (SGCs). To address the original source of DCs in sensory ganglia, a proliferation experiment was also carried in this study. RESULTS: Immune cells with characteristic DC-phenotype were found to be closely located to SGCs and vagal sensory neurons under physiological conditions. The percentage of DCs in relation to neurons was significantly increased by allergic airway inflammation in comparison to the controls (HDM 51.38 ± 2.38% vs. control 28.16 ± 2.86%, p < 0.001). The present study also demonstrated that DCs were shown to proliferate in jugular-nodose ganglia, however, the proliferation rate of DCs is not significantly changed in the two treated animal groups (proliferating DCs/ total DCs: HDM 0.89 ± 0.38%, vs. control 1.19 ± 0.54%, p = 0.68). Also, increased number of CGRP-positive neurons was found in JNC after allergic sensitisation and challenge (HDM 31.16 ± 5.41% vs. control 7.16 ± 1.53%, p < 0.001). CONCLUSION: The present findings suggest that DCs may migrate from outside into the ganglia to interact with sensory neurons enhancing or protecting the allergic airway inflammation. The increase of DCs as well as CGRP-positive neurons in airway ganglia by allergic airway inflammation indicate that intraganglionic DCs and neurons expressing CGRP may contribute to the pathogenesis of bronchial asthma. To understand this neuroimmune interaction in allergic airway inflammation further functional experiments should be carried out in future studies.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/fisiologia , Gânglios Sensitivos/imunologia , Pneumonia/imunologia , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Feminino , Gânglios Sensitivos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/patologia , Hipersensibilidade Respiratória/patologia
17.
Circ Res ; 102(8): 888-95, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18309103

RESUMO

Inflammatory activation of the endothelium by Chlamydophila pneumoniae infection has been implicated in the development of chronic vascular lesions and coronary heart disease by seroepidemiological and animal studies. We tested the hypothesis that C. pneumoniae induced inflammatory gene expression is regulated by Rho-GTPase-related histone modifications. C. pneumoniae infection induced the liberation of proinflammatory interleukin-6, interleukin-8, granulocyte colony-stimulating factor, macrophage inflammatory protein-1beta, granulocyte/macrophage colony-stimulating factor, and interferon-gamma by human endothelial cells. Cytokine secretion was reduced by simvastatin and the specific Rac1 inhibitor NSC23766 but was synergistically enhanced by inhibitors of histone deacetylases trichostatin A and suberoylanilide hydroxamic acid. Infection of endothelial cells with viable C. pneumoniae, but not exposure to heat-inactivated C. pneumoniae or infection with C. trachomatis, induced acetylation of histone H4 and phosphorylation and acetylation of histone H3. Pretreatment of C. pneumoniae-infected cells with simvastatin or NSC23766 reduced global histone modifications as well as specific modifications at the il8 gene promoter, as shown by chromatin immunoprecipitation. Reduced recruitment of nuclear factor kappaB p65/RelA as well as of RNA polymerase II was observed in statin-treated cells. Taken together, Rac1-mediated histone modifications seem to play an important role in C. pneumoniae-induced cytokine production by human endothelial cells.


Assuntos
Chlamydophila pneumoniae/fisiologia , Histonas/metabolismo , Sinvastatina/farmacologia , Células Cultivadas , Chlamydophila pneumoniae/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/metabolismo , Células Endoteliais/microbiologia , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
Cough ; 3: 6, 2007 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-17475014

RESUMO

Exposure to environmental tobacco smoke (ETS) and active tobacco smoking has been shown to increase symptoms of bronchial asthma such as bronchoconstriction but effects on other respiratory symptoms remain poorly assessed. Current levels of exposure to tobacco smoke may also be responsible for the development of chronic cough in both children and adults. The present study analyses the effects of tobacco smoke exposure as potential causes of chronic cough. A panel of PubMed-based searches was performed relating the symptom of cough to various forms of tobacco smoke exposure. It was found that especially prenatal and postnatal exposures to ETS have an important influence on children's respiratory health including the symptom of cough. These effects may be prevented if children and pregnant women are protected from exposure to ETS. Whereas the total number of studies addressing the relationship between cough and ETS exposure is relatively small, the present study demonstrated that there is a critical amount of data pointing to a causative role of environmental ETS exposure for the respiratory symptom of cough. Since research efforts have only targeted this effect to a minor extent, future epidemiological and experimental studies are needed to further unravel the relation between ETS and cough.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...