Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(6): pgae216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894877

RESUMO

Plasmalogens are glycerophospholipids with a vinyl ether linkage at the sn-1 position of the glycerol backbone. Despite being suggested as antioxidants due to the high reactivity of their vinyl ether groups with reactive oxygen species, our study reveals the generation of subsequent reactive oxygen and electrophilic lipid species from oxidized plasmalogen intermediates. By conducting a comprehensive analysis of the oxidation products by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we demonstrate that singlet molecular oxygen [O2 (1Δg)] reacts with the vinyl ether bond, producing hydroperoxyacetal as a major primary product (97%) together with minor quantities of dioxetane (3%). Furthermore, we show that these primary oxidized intermediates are capable of further generating reactive species including excited triplet carbonyls and O2 (1Δg) as well as electrophilic phospholipid and fatty aldehyde species as secondary reaction products. The generation of excited triplet carbonyls from dioxetane thermal decomposition was confirmed by light emission measurements in the visible region using dibromoanthracene as a triplet enhancer. Moreover, O2 (1Δg) generation from dioxetane and hydroperoxyacetal was evidenced by detection of near-infrared light emission at 1,270 nm and chemical trapping experiments. Additionally, we have thoroughly characterized alpha-beta unsaturated phospholipid and fatty aldehydes by LC-HRMS analysis using two probes that specifically react with aldehydes and alpha-beta unsaturated carbonyls. Overall, our findings demonstrate the generation of excited molecules and electrophilic lipid species from oxidized plasmalogen species unveiling the potential prooxidant nature of plasmalogen-oxidized products.

2.
Chem Res Toxicol ; 32(10): 2028-2041, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31496224

RESUMO

Radical mediated oxidation of polyunsaturated fatty acids (PUFA) is known to generate a series of polyoxygenated cyclic products (PUFA-On, n ≥ 3). Here, we describe the characterization of glutathione (GSH) conjugates bound to polyoxygenated docosahexaenoic (DHA-On, n = 3-9), arachidonic (ARA-On, n = 3-7), α-linolenic (ALA-O3), and linoleic (LA-O3) acid species. Similar conjugates were also characterized for N-acetylcysteine (NAC) and Cu,Zn-superoxide dismutase (SOD1). Extensive LC-MS/MS characterization using a synthetic α-linolenic hydroxy-endoperoxide (ALA-O3) derivative revealed at least two types of mechanisms leading to thiol adduction: a mechanism involving the nucleophilic attack by thiolate anion on 1,2-dioxolane to form a sulfenate ester-bonded conjugate and a mechanism involving cleavage of the dioxolane to form a α,ß-unsaturated carbonyl followed by the Michael addition reaction. Finally, we detected a GSH conjugate with hydroxy-endoperoxide derived from linoleic acid (LA-O3) in mice liver. In summary, our study reveals the formation of a series of thiol conjugates that are bound to highly oxygenated PUFA species. GSH conjugates described in our study may potentially play relevant roles in redox and inflammatory processes, especially under high oxygen tension conditions.


Assuntos
Ácidos Graxos Insaturados/química , Glutationa/química , Animais , Cromatografia Líquida , Ácidos Graxos Insaturados/metabolismo , Glutationa/isolamento & purificação , Glutationa/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Oxirredução , Peróxidos/química , Peróxidos/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...