Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 15(45): 6259-6265, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37955245

RESUMO

This study presents the development of a simple, fast, and inexpensive approach for the direct analysis of new psychoactive substances (NPS) in seized tablets and blotter paper, with improved sample preservation and increased analytical frequency. Paper triangles were gently rubbed against the surface of the samples containing synthetic drugs and then subjected to analysis by paper spray ionization mass spectrometry (PS-MS). Seized samples containing lysergic acid diethylamide (LSD) and several other substances from the classes of amphetamines, N-benzyl-substituted phenethylamines, synthetic cathinones, and synthetic cannabinoids, were analysed. Three types of paper were tested (filter paper, blotter paper, and synthetic paper) and several combinations of spray solvents were studied for the optimization. All samples were weighed and photographed before and after sequences of analysis in order to attest to the sample preservation. The results revealed that the approach is excellent for sample preservation, with less than 5% of mass loss even after 27 consecutive analyses. Moreover, no significant signal decreases were observed in mass spectrometry (MS) even after the experiments. It was possible to unequivocally identify illicit substances from seized samples (pills and blotter paper). By overcoming the solubilization and wet extraction process used for sample preparation, the waste was restricted to a volume of only 10 µL of solvent for the PS-MS analysis. The main advantage of our approach over existing methods is the sample preparation, which is simple and quick since the samples are just rubbed against the PS paper. This brings enormous benefits in terms of analytical frequency, economy of time and low consumption of solvents. Another important point is that the sample can remain intact for further analysis, which is crucial in forensic analysis.


Assuntos
Dietilamida do Ácido Lisérgico , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Dietilamida do Ácido Lisérgico/análise , Dietilamida do Ácido Lisérgico/química , Comprimidos , Solventes
2.
J Forensic Sci ; 68(4): 1198-1205, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37098703

RESUMO

This work presents a data survey regarding the qualitative chemical analysis of drugs seized by the Police in the state of Minas Gerais between July 2017 and June 2022, including an evaluation of labeling of 265 samples of anabolic androgenic steroids (AAS) seized in 2020. The Active Pharmaceutical Ingredients (API) present in the samples were identified through chemical analysis and classified by system Anatomical Therapeutic Chemical (ATC) methods. Analysis of the labeling information for 265 samples of AAS followed the guidance of legislation RDC 71 (2009) from ANVISA. For this study 6355 seized pharmaceuticals underwent qualitative chemical analysis that corresponded to 7739 APIs successfully identified and classified. Among the components studied AAS, psychostimulants, anesthetics, and analgesics were the most commonly examined. AAS seized and tested increased by over 100% and for the majority of the samples analyzed were found to not match the labeling on the packaging. In the meantime, anti-obesity drugs presented a prominent increase of 400% from 2020/1 to 2021/2, during covid-19 quarantine. Seized pharmaceuticals and tests can support information in the planning of public health and safety policies.


Assuntos
COVID-19 , Medicamentos Falsificados , Humanos , Esteróides Androgênicos Anabolizantes , Brasil , Polícia , Congêneres da Testosterona
3.
Life Sci ; 176: 26-34, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341178

RESUMO

AIMS: To determine the role of reactive oxygen species (ROS) on sodium nitroprusside (SNP)-induced tolerance. Additionally, we evaluated the role of ROS on NF-κB activation and pro-inflammatory cytokines production during SNP-induced tolerance. MAIN METHODS: To induce in vitro tolerance, endothelium-intact or -denuded aortic rings isolated from male Balb-c mice were incubated for 15, 30, 45 or 60min with SNP (10nmol/L). KEY FINDINGS: Tolerance to SNP was observed after incubation of endothelium-denuded, but not endothelium-intact aortas for 60min with this inorganic nitrate. Pre-incubation of denuded rings with tiron (superoxide anion (O2-) scavenger), and the NADPH oxidase inhibitors apocynin and atorvastatin reversed SNP-induced tolerance. l-NAME (non-selective NOS inhibitor) and l-arginine (NOS substrate) also prevented SNP-induced tolerance. Similarly, ibuprofen (non-selective cyclooxygenase (COX) inhibitor), nimesulide (selective COX-2 inhibitor), AH6809 (prostaglandin PGF2α receptor antagonist) or SQ29584 [PGH2/thromboxane TXA2 receptor antagonist] reversed SNP-induced tolerance. Increased ROS generation was detected in tolerant arteries and both tiron and atorvastatin reversed this response. Tiron prevented tolerance-induced increase on O2- and hydrogen peroxide (H2O2) levels. The increase onp65/NF-κB expression and TNF-α production in tolerant arteries was prevented by tiron. The major new finding of our study is that SNP-induced tolerance is mediated by NADPH-oxidase derived ROS and vasoconstrictor prostanoids derived from COX-2, which are capable of reducing the vasorelaxation induced by SNP. Additionally, we found that ROS mediate the activation of NF-κB and the production of TNF-α in tolerant arteries. SIGNIFICANCE: These findings identify putative molecular mechanisms whereby SNP induces tolerance in the vasculature.


Assuntos
Aorta/metabolismo , Ciclo-Oxigenase 2/metabolismo , Nitroprussiato/farmacologia , Prostaglandina H2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...