Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 16: 806990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250452

RESUMO

Synaptic gene conditions, i.e., "synaptopathies," involve disruption to genes expressed at the synapse and account for between 0.5 and 2% of autism cases. They provide a unique entry point to understanding the molecular and biological mechanisms underpinning autism-related phenotypes. Phelan-McDermid Syndrome (PMS, also known as 22q13 deletion syndrome) and NRXN1 deletions (NRXN1ds) are two synaptopathies associated with autism and related neurodevelopmental disorders (NDDs). PMS often incorporates disruption to the SHANK3 gene, implicated in excitatory postsynaptic scaffolding, whereas the NRXN1 gene encodes neurexin-1, a presynaptic cell adhesion protein; both are implicated in trans-synaptic signaling in the brain. Around 70% of individuals with PMS and 43-70% of those with NRXN1ds receive a diagnosis of autism, suggesting that alterations in synaptic development may play a crucial role in explaining the aetiology of autism. However, a substantial amount of heterogeneity exists between conditions. Most individuals with PMS have moderate to profound intellectual disability (ID), while those with NRXN1ds have no ID to severe ID. Speech abnormalities are common to both, although appear more severe in PMS. Very little is currently known about the neurocognitive underpinnings of phenotypic presentations in PMS and NRXN1ds. The Synaptic Gene (SynaG) study adopts a gene-first approach and comprehensively assesses these two syndromic forms of autism. The study compliments preclinical efforts within AIMS-2-TRIALS focused on SHANK3 and NRXN1. The aims of the study are to (1) establish the frequency of autism diagnosis and features in individuals with PMS and NRXN1ds, (2) to compare the clinical profile of PMS, NRXN1ds, and individuals with 'idiopathic' autism (iASD), (3) to identify mechanistic biomarkers that may account for autistic features and/or heterogeneity in clinical profiles, and (4) investigate the impact of second or multiple genetic hits on heterogeneity in clinical profiles. In the current paper we describe our methodology for phenotyping the sample and our planned comparisons, with information on the necessary adaptations made during the global COVID-19 pandemic. We also describe the demographics of the data collected thus far, including 25 PMS, 36 NRXN1ds, 33 iASD, and 52 NTD participants, and present an interim analysis of autistic features and adaptive functioning.

2.
Trends Genet ; 38(2): 140-151, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34364706

RESUMO

Rare copy-number variants (CNVs) associated with neurodevelopmental disorders (NDDs), i.e., ND-CNVs, provide an insight into the neurobiology of NDDs and, potentially, a link between biology and clinical outcomes. However, ND-CNVs are characterised by incomplete penetrance resulting in heterogeneous carrier phenotypes, ranging from non-affected to multimorbid psychiatric, neurological, and physical phenotypes. Recent evidence indicates that other variants in the genome, or 'other hits', may partially explain the variable expressivity of ND-CNVs. These may be other rare variants or the aggregated effects of common variants that modify NDD risk. Here we discuss the recent findings, current questions, and future challenges relating to other hits research in the context of ND-CNVs and their potential for improved clinical diagnostics and therapeutics for ND-CNV carriers.


Assuntos
Variações do Número de Cópias de DNA , Transtornos do Neurodesenvolvimento , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...