Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 155(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728576

RESUMO

KCNMA1 encodes the voltage- and calcium-activated K+ (BK) channel, which regulates suprachiasmatic nucleus (SCN) neuronal firing and circadian behavioral rhythms. Gain-of-function (GOF) and loss-of-function (LOF) alterations in BK channel activity disrupt circadian behavior, but the effect of human disease-associated KCNMA1 channelopathy variants has not been studied on clock function. Here, we assess circadian behavior in two GOF and one LOF mouse lines. Heterozygous Kcnma1N999S/WT and homozygous Kcnma1D434G/D434G mice are validated as GOF models of paroxysmal dyskinesia (PNKD3), but whether circadian rhythm is affected in this hypokinetic locomotor disorder is unknown. Conversely, homozygous LOF Kcnma1H444Q/H444Q mice do not demonstrate PNKD3. We assessed circadian behavior by locomotor wheel running activity. All three mouse models were rhythmic, but Kcnma1N999S/WT and Kcnma1D434G/D434G showed reduced circadian amplitude and decreased wheel activity, corroborating prior studies focused on acute motor coordination. In addition, Kcnma1D434G/D434G mice had a small decrease in period. However, the phase-shifting sensitivity for both GOF mouse lines was abnormal. Both Kcnma1N999S/WT and Kcnma1D434G/D434G mice displayed increased responses to light pulses and took fewer days to re-entrain to a new light:dark cycle. In contrast, the LOF Kcnma1H444Q/H444Q mice showed no difference in any of the circadian parameters tested. The enhanced sensitivity to phase-shifting stimuli in Kcnma1N999S/WT and Kcnma1D434G/D434G mice was similar to other Kcnma1 GOF mice. Together with previous studies, these results suggest that increasing BK channel activity decreases circadian clock robustness, without rhythm ablation.


Assuntos
Canalopatias , Relógios Circadianos , Humanos , Animais , Camundongos , Relógios Circadianos/genética , Atividade Motora , Cálcio , Modelos Animais de Doenças , Canais de Potássio Ativados por Cálcio de Condutância Alta , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética
2.
Curr Res Physiol ; 5: 404-413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203817

RESUMO

BK K+ channels are critical regulators of neuron and muscle excitability, comprised of a tetramer of pore-forming αsubunits from the KCNMA1 gene and cell- and tissue-selective ß subunits (KCNMB1-4). Mutations in KCNMA1 are associated with neurological disorders, including autism. However, little is known about the role of neuronal BK channel ß subunits in human neuropathology. The ß2 subunit is expressed in central neurons and imparts inactivation to BK channels, as well as altering activation and deactivation gating. In this study, we report the functional effect of G124R, a novel KCNMB2 mutation obtained from whole-exome sequencing of a patient diagnosed with autism spectrum disorder. Residue G124, located in the extracellular loop between TM1 and TM2, is conserved across species, and the G124R missense mutation is predicted deleterious with computational tools. To investigate the pathogenicity potential, BK channels were co-expressed with ß2WT and ß2G124R subunits in HEK293T cells. BK/ß2 currents were assessed from inside-out patches under physiological K+ conditions (140/6 mM K+ and 10 µM Ca2+) during activation and inactivation (voltage-dependence and kinetics). Using ß2 subunits lacking inactivation (ß2IR) revealed that currents from BK/ß2IRG124R channels activated 2-fold faster and deactivated 2-fold slower compared with currents from BK/ß2IRWT channels, with no change in the voltage-dependence of activation (V1/2). Despite the changes in the BK channel opening and closing, BK/ß2G124R inactivation rates (τinact and τrecovery), and the V1/2 of inactivation, were unaltered compared with BK/ß2WT channels under standard steady-state voltage protocols. Action potential-evoked current was also unchanged. Thus, the mutant phenotype suggests the ß2G124R TM1-TM2 extracellular loop could regulate BK channel activation and deactivation kinetics. However, additional evidence is needed to validate pathogenicity for this patient-associated variant in KCNMB2.

3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34413188

RESUMO

TMEM16A Ca2+-activated chloride channels are involved in multiple cellular functions and are proposed targets for diseases such as hypertension, stroke, and cystic fibrosis. This therapeutic endeavor, however, suffers from paucity of selective and potent modulators. Here, exploiting a synthetic small molecule with a biphasic effect on the TMEM16A channel, anthracene-9-carboxylic acid (A9C), we shed light on sites of the channel amenable for pharmacological intervention. Mutant channels with the intracellular gate constitutively open were generated. These channels were entirely insensitive to extracellular A9C when intracellular Ca2+ was omitted. However, when physiological Ca2+ levels were reestablished, the mutants regained sensitivity to A9C. Thus, intracellular Ca2+ is mandatory for the channel response to an extracellular modulator. The underlying mechanism is a conformational change in the outer pore that enables A9C to enter the pore to reach its binding site. The explanation of this structural rearrangement highlights a critical site for pharmacological intervention and reveals an aspect of Ca2+ gating in the TMEM16A channel.


Assuntos
Anoctamina-1/metabolismo , Antracenos/farmacologia , Cálcio/farmacologia , Cloretos/farmacologia , Animais , Anoctamina-1/genética , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Simulação de Dinâmica Molecular , Farmacologia em Rede , Técnicas de Patch-Clamp , Mutação Puntual
4.
ACS Infect Dis ; 7(5): 1260-1274, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797218

RESUMO

Nine hundred million people are infected with the soil-transmitted helminths Ascaris lumbricoides (roundworm), hookworm, and Trichuris trichiura (whipworm). However, low single-dose cure rates of the benzimidazole drugs, the mainstay of preventative chemotherapy for whipworm, together with parasite drug resistance, mean that current approaches may not be able to eliminate morbidity from trichuriasis. We are seeking to develop new anthelmintic drugs specifically with activity against whipworm as a priority and previously identified a hit series of dihydrobenzoxazepinone (DHB) compounds that block motility of ex vivo Trichuris muris. Here, we report a systematic investigation of the structure-activity relationship of the anthelmintic activity of DHB compounds. We synthesized 47 analogues, which allowed us to define features of the molecules essential for anthelmintic action as well as broadening the chemotype by identification of dihydrobenzoquinolinones (DBQs) with anthelmintic activity. We investigated the activity of these compounds against other parasitic nematodes, identifying DHB compounds with activity against Brugia malayi and Heligmosomoides polygyrus. We also demonstrated activity of DHB compounds against the trematode Schistosoma mansoni, a parasite that causes schistosomiasis. These results demonstrate the potential of DHB and DBQ compounds for further development as broad-spectrum anthelmintics.


Assuntos
Anti-Helmínticos , Brugia Malayi , Nematospiroides dubius , Parasitos , Animais , Anti-Helmínticos/farmacologia , Humanos , Schistosoma mansoni , Trichuris
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...