Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 9: 1596, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459787

RESUMO

Organic nitrogen is now considered a significant source of N for plants. Although organic management practices increase soil organic C and N content, the importance of organic N as a source of crop N under organic farming management systems is still poorly understood. While dual-labeled (13C and 15N) molecule methods have been developed to study amino acid uptake by plants, multiple biases may arise from pre-uptake mineralization by microorganisms or post-uptake metabolism by the plant. We propose the combination of different isotopic analysis methods with molecule isotopologues as a novel approach to improve the accuracy of measured amino acid uptake rates in the total N budget of cucumber seedlings and provide a better characterization of post-uptake metabolism. Cucumber seedlings were exposed to solutions containing L-Ala-1-13C,15N or U-L-Ala-13C3,15N, in combination with ammonium nitrate, at total N concentrations ranging from 0 to 15 mM N and at inorganic/organic N ratios from 10:1 to 500:1. Roots and shoots were then subjected to bulk stable isotope analysis (BSIA) by Isotope Ratio Mass Spectrometry (IRMS), and to compound-specific stable isotope analysis (CSIA) of the free amino acids by Gas Chromatography - Combustion - Isotope Ratio Mass Spectrometry (GC-C-IRMS). Plants exposed to a lower inorganic:organic N ratio acquired up to 6.84% of their N from alanine, compared with 0.94% at higher ratio. No 13C from L-Ala-1-13C,15N was found in shoot tissues suggesting that post-uptake metabolism of Ala leads to the loss of the carboxyl-C as CO2. CSIA of the free amino acids in roots confirmed that intact Ala is indeed taken up by the roots, but that it is rapidly metabolized. C atoms other than from the carboxyl group and amino-N from Ala are assimilated in other amino acids, predominantly Glu, Gln, Asp, and Asn. Uptake rates reported by CSIA of the free amino acids are nevertheless much lower (16-64 times) than those reported by BSIA. Combining the use of isotopologues of amino acids with compound-specific isotope analysis helps reduce the bias in the assessment of organic N uptake and improves the understanding of organic N assimilation especially in the context of organic horticulture.

2.
Am J Bot ; 103(5): 963-70, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27208363

RESUMO

PREMISE OF THE STUDY: Spring-ephemeral forest-herbs emerge early to take advantage of the high-light conditions preceding canopy closure; they complete their life cycle in a few weeks, then senesce as the tree canopy closes. Summer greens acclimate their leaves to shade and thus manage to maintain a net carbon gain throughout summer. Differences in phenology among life stages within a species have been reported in tree saplings, whose leaf activity may extend beyond the period of shade conditions caused by mature trees. Similar phenological acclimation has seldom been studied in forest herbs. METHODS: We compared wild-leek bulb growth and leaf phenology among plants from seedling to maturity and from under 4 to 60% natural light availability. We also compared leaf chlorophyll content and chl a/b ratio among seedlings and adult plants in a natural population as an indicator of photosynthetic capacity and acclimation to light environment. KEY RESULTS: Overall, younger plants senesced later than mature ones. Increasing light availability delayed senescence in mature plants, while hastening seedling senescence. In natural populations, only seedlings acclimated to the natural reduction in light availability through time. CONCLUSIONS: Wild-leek seedlings exhibit a summer-green phenology, whereas mature plants behave as true spring ephemerals. Growth appears to be more source-limited in seedlings than in mature plants. This modulation of phenological strategy, if confirmed in other species, would require a review of the current classification of species as either spring ephemerals, summer greens, wintergreens, or evergreens.


Assuntos
Aclimatação/efeitos da radiação , Luz , Cebolas/fisiologia , Cebolas/efeitos da radiação , Estações do Ano , Clorofila/metabolismo , Funções Verossimilhança , Fotossíntese/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...