Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(9): 100399, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37719141

RESUMO

The mechanistic tie between genome-wide association study (GWAS)-implicated risk variants and disease-relevant cellular phenotypes remains largely unknown. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons as a neurodevelopmental model, we identify multiple schizophrenia (SZ) risk variants that display allele-specific open chromatin (ASoC) and are likely to be functional. Editing the strongest ASoC SNP, rs2027349, near vacuolar protein sorting 45 homolog (VPS45) alters the expression of VPS45, lncRNA AC244033.2, and a distal gene, C1orf54. Notably, the transcriptomic changes in neurons are associated with SZ and other neuropsychiatric disorders. Neurons carrying the risk allele exhibit increased dendritic complexity and hyperactivity. Interestingly, individual/combinatorial gene knockdown shows that these genes alter cellular phenotypes in a non-additive synergistic manner. Our study reveals that multiple genes at a single GWAS risk locus mediate a compound effect on neural function, providing a mechanistic link between a non-coding risk variant and disease-related cellular phenotypes.

2.
Front Mol Neurosci ; 16: 1144066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969554

RESUMO

Introduction: AnkG, encoded by the ANK3 gene, is a multifunctional scaffold protein with complex isoform expression: the 480 and 270 kDa isoforms have roles at the axon initial segment and node of Ranvier, whereas the 190 kDa isoform (AnkG-190) has an emerging role in the dendritic shaft and spine heads. All isoforms of AnkG undergo palmitoylation, a post-translational modification regulating protein attachment to lipid membranes. However, palmitoylation of AnkG-190 has not been investigated in dendritic spines. The ANK3 gene and altered expression of AnkG proteins are associated with a variety of neuropsychiatric and neurodevelopmental disorders including bipolar disorder and are implicated in the lithium response, a commonly used mood stabilizer for bipolar disorder patients, although the precise mechanisms involved are unknown. Result: Here, we showed that Cys70 palmitoylation stabilizes the localization of AnkG-190 in spine heads and at dendritic plasma membrane nanodomains. Mutation of Cys70 impairs AnkG-190 function in dendritic spines and alters PSD-95 scaffolding. Interestingly, we find that lithium reduces AnkG-190 palmitoylation thereby increasing its mobility in dendritic spines. Finally, we demonstrate that the palmitoyl acyl transferase ZDHHC8, but not ZDHHC5, increases AnkG-190 stability in spine heads and is inhibited by lithium. Discussion: Together, our data reveal that palmitoylation is critical for AnkG-190 localization and function and a potential ZDHHC8/AnkG-190 mechanism linking AnkG-190 mobility to the neuronal effects of lithium.

3.
Nat Commun ; 14(1): 825, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36808153

RESUMO

Neuropsychiatric disorders (NPDs) are frequently co-morbid with epilepsy, but the biological basis of shared risk remains poorly understood. The 16p11.2 duplication is a copy number variant that confers risk for diverse NPDs including autism spectrum disorder, schizophrenia, intellectual disability and epilepsy. We used a mouse model of the 16p11.2 duplication (16p11.2dup/+) to uncover molecular and circuit properties associated with this broad phenotypic spectrum, and examined genes within the locus capable of phenotype reversal. Quantitative proteomics revealed alterations to synaptic networks and products of NPD risk genes. We identified an epilepsy-associated subnetwork that was dysregulated in 16p11.2dup/+ mice and altered in brain tissue from individuals with NPDs. Cortical circuits from 16p11.2dup/+ mice exhibited hypersynchronous activity and enhanced network glutamate release, which increased susceptibility to seizures. Using gene co-expression and interactome analysis, we show that PRRT2 is a major hub in the epilepsy subnetwork. Remarkably, correcting Prrt2 copy number rescued aberrant circuit properties, seizure susceptibility and social deficits in 16p11.2dup/+ mice. We show that proteomics and network biology can identify important disease hubs in multigenic disorders, and reveal mechanisms relevant to the complex symptomatology of 16p11.2 duplication carriers.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Animais , Camundongos , Transtorno do Espectro Autista/genética , Encéfalo , Deleção Cromossômica , Variações do Número de Cópias de DNA , Epilepsia/genética , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Fenótipo
4.
Cell Syst ; 13(4): 268-270, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35447076

RESUMO

In this issue of Cell Systems, Greco et al. define high-confidence polyglutamine-dependent huntingtin interactors using AP-MS and complementary approaches and categorize them based on their interaction abundance and stability. The study reveals that a toxic gain of polyQ-dependent Htt interacting partners is a robust feature of HD pathogenesis.


Assuntos
Proteínas Nucleares , Peptídeos , Proteína Huntingtina/genética , Proteínas Nucleares/genética , Peptídeos/genética
5.
Mol Psychiatry ; 26(6): 1775-1789, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398084

RESUMO

Homer1 is a synaptic scaffold protein that regulates glutamatergic synapses and spine morphogenesis. HOMER1 knockout (KO) mice show behavioral abnormalities related to psychiatric disorders, and HOMER1 has been associated with psychiatric disorders such as addiction, autism disorder (ASD), schizophrenia (SZ), and depression. However, the mechanisms by which it promotes spine stability and its global function in maintaining the synaptic proteome has not yet been fully investigated. Here, we used computational approaches to identify global functions for proteins containing the Homer1-interacting PPXXF motif within the postsynaptic compartment. Ankyrin-G was one of the most topologically important nodes in the postsynaptic peripheral membrane subnetwork, and we show that one of the PPXXF motifs, present in the postsynaptically-enriched 190 kDa isoform of ankyrin-G (ankyrin-G 190), is recognized by the EVH1 domain of Homer1. We use proximity ligation combined with super-resolution microscopy to map the interaction of ankyrin-G and Homer1 to distinct nanodomains within the spine head and correlate them with spine head size. This interaction motif is critical for ankyrin-G 190's ability to increase spine head size, and for the maintenance of a stable ankyrin-G pool in spines. Intriguingly, lack of Homer1 significantly upregulated the abundance of ankyrin-G, but downregulated Shank3 in cortical crude plasma membrane fractions. In addition, proteomic analysis of the cortex in HOMER1 KO and wild-type (WT) mice revealed a global reshaping of the postsynaptic proteome, surprisingly characterized by extensive upregulation of synaptic proteins. Taken together, we show that Homer1 and its protein interaction motif have broad global functions within synaptic protein-protein interaction networks. Enrichment of disease risk factors within these networks has important implications for neurodevelopmental disorders including bipolar disorder, ASD, and SZ.


Assuntos
Anquirinas , Espinhas Dendríticas , Animais , Proteínas de Arcabouço Homer , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Proteoma , Proteômica , Sinapses
6.
Neurosci Lett ; 701: 92-99, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30779956

RESUMO

GABAergic interneurons are emerging as prominent substrates in the pathophysiology of multiple neurodevelopmental disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and epilepsy. Interneuron excitatory activity is influenced by 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid receptors (AMPARs), which in turn affects excitatory transmission in the central nervous system. Yet how dysregulation of interneuronal AMPARs distinctly contributes to the molecular underpinning of neurobiological disease is drastically underexplored. Contactin-associated protein-like 2 (CNTNAP2) is a neurexin-related adhesion molecule shown to mediate AMPAR subcellular distribution while calcium/calmodulin-dependent serine protein kinase (CASK) is a multi-functional scaffold involved with glutamate receptor trafficking. Mutations in both genes have overlapping disease associations, including autism spectrum disorders, intellectual disability, and epilepsy, thus suggesting converging perturbations of excitatory/inhibitory balance. Our lab has previously shown that CNTNAP2 stabilizes interneuron dendritic arbors through CASK and that CNTNAP2 regulates AMPAR subunit GluA1 trafficking in excitatory neurons. The interaction between these three proteins, however, has not been studied in interneurons. Using biochemical techniques, structured illumination microscopy (SIM) and shRNA technology, we first confirm that these three proteins interact in mouse brain, and then examined relationship between CNTNAP2, CASK and GluA1 in mature interneurons. Using SIM, we ascertain that a large fraction of endogenous CNTNAP2, CASK, and GluA1 molecules collectively colocalize together in a tripartite manner. Finally, individual knockdown of either CNTNAP2 or CASK similarly alter GluA1 levels and localization. These findings offer insight to molecular mechanisms underlying GluA1 regulation in interneurons.


Assuntos
Guanilato Quinases/deficiência , Guanilato Quinases/metabolismo , Interneurônios/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Receptores de AMPA/metabolismo , Animais , Interneurônios/citologia , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley
7.
Cell Stem Cell ; 21(3): 305-318.e8, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28803920

RESUMO

Most disease variants lie within noncoding genomic regions, making their functional interpretation challenging. Because chromatin openness strongly influences transcriptional activity, we hypothesized that cell-type-specific open chromatin regions (OCRs) might highlight disease-relevant noncoding sequences. To investigate, we mapped global OCRs in neurons differentiating from hiPSCs, a cellular model for studying neurodevelopmental disorders such as schizophrenia (SZ). We found that the OCRs are highly dynamic and can stratify GWAS-implicated SZ risk variants. Of the more than 3,500 SZ-associated variants analyzed, we prioritized ∼100 putatively functional ones located in neuronal OCRs, including rs1198588, at a leading risk locus flanking MIR137. Excitatory neurons derived from hiPSCs with CRISPR/Cas9-edited rs1198588 or a rare proximally located SZ risk variant showed altered MIR137 expression, dendrite arborization, and synapse maturation. Our study shows that noncoding disease variants in OCRs can affect neurodevelopment, and that analysis of open chromatin regions can help prioritize functionally relevant noncoding variants identified by GWAS.


Assuntos
Cromatina/metabolismo , Loci Gênicos , Predisposição Genética para Doença , Células-Tronco Pluripotentes Induzidas/citologia , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/citologia , Esquizofrenia/genética , Sequência de Bases , Diferenciação Celular/genética , Pegada de DNA , Dendritos/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Risco , Sinapses/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...