Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31939738

RESUMO

For pathogens infecting single host species evolutionary trade-offs have previously been demonstrated between pathogen-induced mortality rates and transmission rates. It remains unclear, however, how such trade-offs impact sub-lethal pathogen-inflicted damage, and whether these trade-offs even occur in broad host-range pathogens. Here, we examine changes over the past 110 years in symptoms induced in maize by the broad host-range pathogen, maize streak virus (MSV). Specifically, we use the quantified symptom intensities of cloned MSV isolates in differentially resistant maize genotypes to phylogenetically infer ancestral symptom intensities and check for phylogenetic signal associated with these symptom intensities. We show that whereas symptoms reflecting harm to the host have remained constant or decreased, there has been an increase in how extensively MSV colonizes the cells upon which transmission vectors feed. This demonstrates an evolutionary trade-off between amounts of pathogen-inflicted harm and how effectively viruses position themselves within plants to enable onward transmission.


Assuntos
Interações Hospedeiro-Patógeno/genética , Vírus do Listrado do Milho , Doenças das Plantas/virologia , Zea mays , Evolução Molecular , Interações Hospedeiro-Patógeno/fisiologia , Vírus do Listrado do Milho/patogenicidade , Vírus do Listrado do Milho/fisiologia , Doenças das Plantas/classificação , Doenças das Plantas/genética , Necrose e Clorose das Plantas/classificação , Necrose e Clorose das Plantas/genética , Necrose e Clorose das Plantas/virologia , Zea mays/genética , Zea mays/fisiologia , Zea mays/virologia
2.
Nat Rev Microbiol ; 17(10): 632-644, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31312033

RESUMO

The discovery of the first non-cellular infectious agent, later determined to be tobacco mosaic virus, paved the way for the field of virology. In the ensuing decades, research focused on discovering and eliminating viral threats to plant and animal health. However, recent conceptual and methodological revolutions have made it clear that viruses are not merely agents of destruction but essential components of global ecosystems. As plants make up over 80% of the biomass on Earth, plant viruses likely have a larger impact on ecosystem stability and function than viruses of other kingdoms. Besides preventing overgrowth of genetically homogeneous plant populations such as crop plants, some plant viruses might also promote the adaptation of their hosts to changing environments. However, estimates of the extent and frequencies of such mutualistic interactions remain controversial. In this Review, we focus on the origins of plant viruses and the evolution of interactions between these viruses and both their hosts and transmission vectors. We also identify currently unknown aspects of plant virus ecology and evolution that are of practical importance and that should be resolvable in the near future through viral metagenomics.


Assuntos
Ecossistema , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Vírus de Plantas/crescimento & desenvolvimento , Plantas/virologia , Evolução Biológica
3.
Virus Res ; 238: 171-178, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687345

RESUMO

Maize streak virus (MSV), an important pathogen of maize in Africa, is the most extensively studied member of the Mastrevirus genus in the family Geminiviridae. Comparatively little is known about other monocot-infecting African mastreviruses, most of which infect uncultivated grasses. Here we determine the complete sequences of 134 full African mastrevirus genomes from predominantly uncultivated Poaceae species. Based on established taxonomic guidelines for the genus Mastrevirus, these genomes could be classified as belonging to the species Maize streak virus, Eragrostis minor streak virus, Maize streak Reunion virus, Panicum streak virus, Sugarcane streak Reunion virus and Sugarcane streak virus. Together with all other publicly available African monocot-infecting mastreviruses, the 134 new isolates extend the known geographical distributions of many of these species, including MSV which we found infecting Digitaria sp. on the island of Grand Canaria: the first definitive discovery of any African monocot-infecting mastreviruses north-west of the Saharan desert. These new isolates also extend the known host ranges of both African mastrevirus species and the strains within these. Most notable was the discovery of MSV-C isolates infecting maize which suggests that this MSV strain, which had previously only ever been found infecting uncultivated species, may be in the process of becoming adapted to this important staple crop.


Assuntos
Geminiviridae/classificação , Geminiviridae/fisiologia , Variação Genética , Especificidade de Hospedeiro , Filogeografia , Doenças das Plantas/virologia , Poaceae/virologia , África , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Ilhas , Filogenia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
4.
Virus Res ; 232: 69-76, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28192163

RESUMO

Maize streak virus (MSV), the causal agent of maize streak disease (MSD), is the most important viral pathogen of Africa's staple food crop, maize. Previous phylogeographic analyses have revealed that the most widely-distributed and common MSV variant, MSV-A1, has been repeatedly traversing Africa over the past fifty years with long-range movements departing from either the Lake Victoria region of East Africa, or the region around the convergence of Zimbabwe, South Africa and Mozambique in southern Africa. Despite Kenya being the second most important maize producing country in East Africa, little is known about the Kenyan MSV population and its contribution to the ongoing diversification and trans-continental dissemination of MSV-A1. We therefore undertook a sampling survey in this country between 2008 and 2011, collecting MSD prevalence data in 119 farmers' fields, symptom severity data for 170 maize plants and complete MSV genome sequence data for 159 MSV isolates. We then used phylogenetic and phylogeographic analyses to show that whereas the Kenyan MSV population is likely primarily derived from the MSV population in neighbouring Uganda, it displays considerably more geographical structure than the Ugandan population. Further, this geographical structure likely confounds apparent associations between virus genotypes and both symptom severity and MSD prevalence in Kenya. Finally, we find that Kenya is probably a sink rather than a source of MSV diversification and movement, and therefore, unlike Uganda, Kenya probably does not play a major role in the trans-continental dissemination of MSV-A1.


Assuntos
DNA Viral/genética , Genoma Viral , Vírus do Listrado do Milho/genética , Filogenia , Doenças das Plantas/virologia , Zea mays/virologia , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Quênia , Vírus do Listrado do Milho/classificação , Filogeografia , Uganda
5.
Arch Virol ; 160(2): 483-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25344899

RESUMO

Throughout sub-Saharan Africa, maize streak virus strain A (MSV-A), the causal agent of maize streak disease (MSD), is an important biological constraint on maize production. In November/December 2010, an MSD survey was carried out in the forest and transition zones of Ghana in order to obtain MSV-A virulence sources for the development of MSD-resistant maize genotypes with agronomic properties suitable for these regions. In 79 well-distributed maize fields, the mean MSD incidence was 18.544 % and the symptom severity score was 2.956 (1 = no symptoms and 5 = extremely severe). We detected no correlation between these two variables. Phylogenetic analysis of cloned MSV-A isolates that were fully sequenced from samples collected in 51 of these fields, together with those sampled from various other parts of Africa, indicated that all of the Ghanaian isolates occurred within a broader cluster of West African isolates, all belonging to the highly virulent MSV-A1 subtype. Besides being the first report of a systematic MSV survey in Ghana, this study is the first to characterize the full-genome sequences of Ghanaian MSV isolates. The 51 genome sequences determined here will additionally be a valuable resource for the rational selection of representative MSV-A variant panels for MSD resistance screening.


Assuntos
Genoma Viral/genética , Vírus do Listrado do Milho/classificação , Vírus do Listrado do Milho/genética , Doenças das Plantas/virologia , Zea mays/virologia , Sequência de Bases , DNA Circular/genética , DNA Viral/genética , Florestas , Genótipo , Gana , Vírus do Listrado do Milho/isolamento & purificação , Dados de Sequência Molecular , Filogeografia , Folhas de Planta/virologia , Análise de Sequência de DNA
6.
PLoS One ; 9(8): e105932, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25166274

RESUMO

Maize streak virus (MSV), which causes maize streak disease (MSD), is the major viral pathogenic constraint on maize production in Africa. Type member of the Mastrevirus genus in the family Geminiviridae, MSV has a 2.7 kb, single-stranded circular DNA genome encoding a coat protein, movement protein, and the two replication-associated proteins Rep and RepA. While we have previously developed MSV-resistant transgenic maize lines constitutively expressing "dominant negative mutant" versions of the MSV Rep, the only transgenes we could use were those that caused no developmental defects during the regeneration of plants in tissue culture. A better transgene expression system would be an inducible one, where resistance-conferring transgenes are expressed only in MSV-infected cells. However, most known inducible transgene expression systems are hampered by background or "leaky" expression in the absence of the inducer. Here we describe an adaptation of the recently developed INPACT system to express MSV-derived resistance genes in cell culture. Split gene cassette constructs (SGCs) were developed containing three different transgenes in combination with three different promoter sequences. In each SGC, the transgene was split such that it would be translatable only in the presence of an infecting MSV's replication associated protein. We used a quantitative real-time PCR assay to show that one of these SGCs (pSPLITrepIII-Rb-Ubi) inducibly inhibits MSV replication as efficiently as does a constitutively expressed transgene that has previously proven effective in protecting transgenic maize from MSV. In addition, in our cell-culture based assay pSPLITrepIII-Rb-Ubi inhibited replication of diverse MSV strains, and even, albeit to a lesser extent, of a different mastrevirus species. The application of this new technology to MSV resistance in maize could allow a better, more acceptable product.


Assuntos
Resistência à Doença , Vírus do Listrado do Milho/genética , Plantas Geneticamente Modificadas/virologia , Zea mays/genética , Zea mays/imunologia , Técnicas de Cultura de Células , Genoma Viral , Vírus do Listrado do Milho/imunologia , Plantas Geneticamente Modificadas/imunologia , Regiões Promotoras Genéticas , Transgenes , Proteínas Virais/genética , Proteínas Virais/imunologia , Replicação Viral , Zea mays/virologia
7.
Arch Virol ; 159(10): 2765-70, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24796552

RESUMO

The A-strain of maize streak virus (MSV-A; genus Mastrevirus, family Geminiviridae), the causal agent of maize streak disease, places a major constraint on maize production throughout sub-Saharan Africa. In West-African countries such as Nigeria, where maize is not cultivated year-round, this MSV strain is forced to overwinter in non-maize hosts. In order to both identify uncultivated grasses that might harbour MSV-A during the winter season and further characterise the diversity of related maize-associated streak viruses, we collected maize and grass samples displaying streak symptoms in a number of Nigerian maize fields. From these we isolated and cloned 18 full mastrevirus genomes (seven from maize and 11 from various wild grass species). Although only MSV-A isolates were obtained from maize, both MSV-A and MSV-F isolates were obtained from Digitaria ciliaris. Four non-MSV African streak viruses were also sampled, including sugarcane streak Reunion virus and Urochloa streak virus (USV) from Eleusine coacana, USV from Urochloa sp., maize streak Reunion virus (MSRV) from both Setaria barbata and Rottboellia sp., and a novel highly divergent mastrevirus from Axonopus compressus, which we have tentatively named Axonopus compressus streak virus (ACSV). Besides the discovery of this new mastrevirus species and expanding the known geographical and host ranges of MSRV, we have added D. ciliaris to the list of uncultivated species within which Nigerian MSV-A isolates are possibly able to overwinter.


Assuntos
Vírus do Listrado do Milho/classificação , Vírus do Listrado do Milho/genética , Zea mays/virologia , DNA Viral , Digitaria/virologia , Eleusine/virologia , Genoma Viral/genética , Nigéria , Doenças das Plantas/virologia , Setaria (Planta)/virologia
8.
J Virol ; 88(14): 7843-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24789787

RESUMO

Although homologous recombination can potentially provide viruses with vastly more evolutionary options than are available through mutation alone, there are considerable limits on the adaptive potential of this important evolutionary process. Primary among these is the disruption of favorable coevolved genetic interactions that can occur following the transfer of foreign genetic material into a genome. Although the fitness costs of such disruptions can be severe, in some cases they can be rapidly recouped by either compensatory mutations or secondary recombination events. Here, we used a maize streak virus (MSV) experimental model to explore both the extremes of recombination-induced genetic disruption and the capacity of secondary recombination to adaptively reverse almost lethal recombination events. Starting with two naturally occurring parental viruses, we synthesized two of the most extreme conceivable MSV chimeras, each effectively carrying 182 recombination breakpoints and containing thorough reciprocal mixtures of parental polymorphisms. Although both chimeras were severely defective and apparently noninfectious, neither had individual movement-, encapsidation-, or replication-associated genome regions that were on their own "lethally recombinant." Surprisingly, mixed inoculations of the chimeras yielded symptomatic infections with viruses with secondary recombination events. These recombinants had only 2 to 6 breakpoints, had predominantly inherited the least defective of the chimeric parental genome fragments, and were obviously far more fit than their synthetic parents. It is clearly evident, therefore, that even when recombinationally disrupted virus genomes have extremely low fitness and there are no easily accessible routes to full recovery, small numbers of secondary recombination events can still yield tremendous fitness gains. Importance: Recombination between viruses can generate strains with enhanced pathological properties but also runs the risk of producing hybrid genomes with decreased fitness due to the disruption of favorable genetic interactions. Using two synthetic maize streak virus genome chimeras containing alternating genome segments derived from two natural viral strains, we examined both the fitness costs of extreme degrees of recombination (both chimeras had 182 recombination breakpoints) and the capacity of secondary recombination events to recoup these costs. After the severely defective chimeras were introduced together into a suitable host, viruses with between 1 and 3 secondary recombination events arose, which had greatly increased replication and infective capacities. This indicates that even in extreme cases where recombination-induced genetic disruptions are almost lethal, and 91 consecutive secondary recombination events would be required to reconstitute either one of the parental viruses, moderate degrees of fitness recovery can be achieved through relatively small numbers of secondary recombination events.


Assuntos
Adaptação Biológica , Recombinação Homóloga , Vírus do Listrado do Milho/genética , Viabilidade Microbiana , DNA Viral/química , DNA Viral/genética , Evolução Molecular , Vírus do Listrado do Milho/fisiologia , Doenças das Plantas/virologia , Análise de Sequência de DNA , Zea mays/virologia
9.
PLoS One ; 9(1): e85429, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465558

RESUMO

BACKGROUND: High-risk (HR) HPV genotypes other than 16 and 18 have been detected in a significant proportion of immunocompromised females. We aim to evaluate the frequency of HR HPV genotypes in a population of HIV-positive Caribbean women. METHODS: One hundred sixty-seven consecutive, non-pregnant, HIV-positive females ≥18 years were recruited in this study. Each participant received a vaginal examination, PAP smear, and completed a questionnaire. DNA was extracted for HPV testing in 86 patients. RESULTS: Mean age was 39.1 years for women positive for HR HPV and 43.1 years for women negative for HR HPV (P value  = 0.040). 78% (130/167) of the women had HR HPV infections; the prevalence of abnormal cervical cytology was 38% among women who were HR HPV-positive compared to women who were HR HPV-negative (22%). Fifty-one percent of the 86 women with available genotype carried infections with HPV 16 and/or HPV 18; genotypes of unknown risk were also frequently observed. Women who had a CD4+ count of ≤200 had 7 times increased odds of carrying HR HPV infection in comparison to women with CD4+>200. CONCLUSIONS: HR HPV infections in HIV infected females may consist of more than just HPV 16 and 18, but also HPV 52 and 58. Further studies are needed to determine whether HPV 52 and 58 play a significant role in the development of cervical cytological abnormalities in HIV+ women.


Assuntos
Coinfecção/virologia , Infecções por HIV/virologia , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Infecções por Papillomavirus/virologia , Adulto , Idoso , Bahamas/epidemiologia , Colo do Útero/patologia , Colo do Útero/virologia , Coinfecção/epidemiologia , Feminino , Genótipo , Infecções por HIV/epidemiologia , Humanos , Pessoa de Meia-Idade , Infecções por Papillomavirus/epidemiologia , Prevalência , Risco , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/virologia , Adulto Jovem
10.
Virology ; 442(2): 173-9, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23679984

RESUMO

The plant-infecting mastreviruses (family Geminiviridae) express two distinct replication-initiator proteins, Rep and RepA. Although RepA is essential for systemic infectivity, little is known about its precise function. We therefore investigated its role in replication using 2D-gel electrophoresis to discriminate the replicative forms of Maize streak virus (MSV) mutants that either fail to express RepA (RepA(-)), or express RepA that is unable to bind the plant retinoblastoma related protein, pRBR. Whereas amounts of viral DNA were reduced in two pRBR-binding deficient RepA mutants, their repertoires of replicative forms changed only slightly. While a complete lack of RepA expression was also associated with reduced viral DNA titres, the only traces of replicative intermediates of RepA(-) viruses were those indicative of recombination-dependent replication. We conclude that in MSV, RepA, but not RepA-pRBR binding, is necessary for single-stranded DNA production and efficient rolling circle replication.


Assuntos
DNA Helicases/metabolismo , Vírus do Listrado do Milho/fisiologia , Transativadores/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Células Cultivadas , DNA Helicases/genética , Eletroforese em Gel Bidimensional , Vírus do Listrado do Milho/genética , Deleção de Sequência , Transativadores/genética , Carga Viral , Proteínas Virais/genética , Zea mays/virologia
11.
BMC Evol Biol ; 12: 252, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23268599

RESUMO

BACKGROUND: Single-stranded (ss) DNA viruses in the family Geminiviridae are proving to be very useful in real-time evolution studies. The high mutation rate of geminiviruses and other ssDNA viruses is somewhat mysterious in that their DNA genomes are replicated in host nuclei by high fidelity host polymerases. Although strand specific mutation biases observed in virus species from the geminivirus genus Mastrevirus indicate that the high mutation rates in viruses in this genus may be due to mutational processes that operate specifically on ssDNA, it is currently unknown whether viruses from other genera display similar strand specific mutation biases. Also, geminivirus genomes frequently recombine with one another and an alternative cause of their high mutation rates could be that the recombination process is either directly mutagenic or produces a selective environment in which the survival of mutants is favoured. To investigate whether there is an association between recombination and increased basal mutation rates or increased degrees of selection favoring the survival of mutations, we compared the mutation dynamics of the MSV-MatA and MSV-VW field isolates of Maize streak virus (MSV; Mastrevirus), with both a laboratory constructed MSV recombinant, and MSV recombinants closely resembling MSV-MatA. To determine whether strand specific mutation biases are a general characteristic of geminivirus evolution we compared mutation spectra arising during these MSV experiments with those arising during similar experiments involving the geminivirus Tomato yellow leaf curl virus (Begomovirus genus). RESULTS: Although both the genomic distribution of mutations and the occurrence of various convergent mutations at specific genomic sites indicated that either mutation hotspots or selection for adaptive mutations might elevate observed mutation rates in MSV, we found no association between recombination and mutation rates. Importantly, when comparing the mutation spectra of MSV and TYLCV we observed similar strand specific mutation biases arising predominantly from imbalances in the complementary mutations G → T: C → A. CONCLUSIONS: While our results suggest that recombination does not strongly influence mutation rates in MSV, they indicate that high geminivirus mutation rates are at least partially attributable to increased susceptibility of all geminivirus genomes to oxidative damage while in a single stranded state.


Assuntos
Evolução Molecular , Vírus do Listrado do Milho/genética , Taxa de Mutação , Recombinação Genética , Adaptação Fisiológica/genética , Sequência de Bases , Geminiviridae/classificação , Geminiviridae/genética , Genoma Viral/genética , Genótipo , Dados de Sequência Molecular , Mutação , Doenças das Plantas/virologia , Seleção Genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Zea mays/virologia
12.
Arch Virol ; 157(8): 1617-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22543634

RESUMO

Despite extensive sampling, only one virus belonging to the genus Mastrevirus of the family Geminiviridae, maize streak virus (MSV), has until now been detected in maize with maize streak disease (MSD) symptoms. Here, we report for the first time a second, highly divergent, mastrevirus isolated from two maize plants displaying characteristic MSD-like symptoms, sampled on the South-west Indian Ocean Island, La Réunion. The two isolates shared <57 % genome-wide identity with all other known mastreviruses. We propose calling the new species Maize streak Réunion virus.


Assuntos
Geminiviridae , Doenças das Plantas/virologia , Zea mays/virologia , Sequência de Bases , DNA Viral/genética , Geminiviridae/classificação , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Genoma Viral , Dados de Sequência Molecular , Filogenia , Recombinação Genética , Reunião
13.
Virus Res ; 166(1-2): 130-5, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22465471

RESUMO

The application of sequence non-specific rolling circle amplification of circular single stranded (ss) DNA molecules to viral metagenomics has facilitated the discovery in various ecosystems of what is probably a diverse array of novel ssDNA viruses. Here we describe a putative novel ssDNA virus (at a genome level), cassava associated circular DNA virus (CasCV), isolated from cassava leaf samples infected with the fungi Collectotrichum and Plectosphaerella. CasCV has a circular ambisense genome and shares significant genome similarities with Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), Mosquito VEM virus SDBVL and Meles meles faecal virus (MmFV). The CasCV genome (2220 nt) has three large open reading frames. While it is probable that one of these encodes a capsid protein, the other two probably express a replication associated protein (Rep) following the removal of an intron such as that found in the Rep encoding genes of some geminiviruses. This Rep would contain four conserved rolling circle replication (RCR) related motifs that have previously been identified in geminivirus, circovirus and nanovirus Reps. Given both that the CasCV Rep and CP share 62.7% and 39.8% amino acid identity respectively with the Rep and CP of SsHADV-1, and that CasCV was discovered associated with cassava infecting fungi, we suggest that CasCV should be classified within the mycovirus taxonomic family. However, host range studies using infectious clones will be required to demonstrate the novel virus' likely origin and actual host species.


Assuntos
Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , DNA Viral/genética , Manihot/virologia , Sequência de Aminoácidos , Análise por Conglomerados , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA Viral/química , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Folhas de Planta/virologia , Conformação Proteica , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
14.
Arch Virol ; 156(12): 2297-301, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21960043

RESUMO

Dahlia mosaic disease of the ornamental flowering plant Dahlia is caused by two caulimoviruses, dahlia mosaic virus (DMV) and dahlia common mosaic virus (DCMV). We used a rolling-circle amplification method to amplify, clone and determine for the first time the full genome sequence of a DCMV isolate from New Zealand (DCMV-NZ). Within the 7949-bp circular double-stranded retro-transcribing DCMV-NZ DNA, we identified six putative open reading frames, typical of all genomes in the family Caulimoviridae. The availability of the complete DCMV sequence provides a reference genome against which all others can be compared.


Assuntos
Caulimovirus/genética , Dahlia/virologia , Caulimovirus/isolamento & purificação , Caulimovirus/patogenicidade , Mapeamento Cromossômico , Genoma Viral , Dados de Sequência Molecular , Nova Zelândia , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , Proteínas Virais/genética
15.
J Virol ; 85(18): 9623-36, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21715477

RESUMO

Maize streak virus strain A (MSV-A), the causal agent of maize streak disease, is today one of the most serious biotic threats to African food security. Determining where MSV-A originated and how it spread transcontinentally could yield valuable insights into its historical emergence as a crop pathogen. Similarly, determining where the major extant MSV-A lineages arose could identify geographical hot spots of MSV evolution. Here, we use model-based phylogeographic analyses of 353 fully sequenced MSV-A isolates to reconstruct a plausible history of MSV-A movements over the past 150 years. We show that since the probable emergence of MSV-A in southern Africa around 1863, the virus spread transcontinentally at an average rate of 32.5 km/year (95% highest probability density interval, 15.6 to 51.6 km/year). Using distinctive patterns of nucleotide variation caused by 20 unique intra-MSV-A recombination events, we tentatively classified the MSV-A isolates into 24 easily discernible lineages. Despite many of these lineages displaying distinct geographical distributions, it is apparent that almost all have emerged within the past 4 decades from either southern or east-central Africa. Collectively, our results suggest that regular analysis of MSV-A genomes within these diversification hot spots could be used to monitor the emergence of future MSV-A lineages that could affect maize cultivation in Africa.


Assuntos
Evolução Molecular , Vírus do Listrado do Milho/genética , Vírus do Listrado do Milho/isolamento & purificação , Filogeografia , Doenças das Plantas/virologia , Zea mays/virologia , África , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Vírus do Listrado do Milho/classificação , Epidemiologia Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA
16.
J Gen Virol ; 92(Pt 10): 2458-2465, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21653753

RESUMO

Maize streak disease, caused by the A strain of the African endemic geminivirus, maize streak mastrevirus (MSV-A), threatens the food security and livelihoods of subsistence farmers throughout sub-Saharan Africa. Using a well-established transient expression assay, this study investigated the potential of a spliceable-intron hairpin RNA (hpRNA) approach to interfere with MSV replication. Two strategies were explored: (i) an inverted repeat of a 662 bp region of the MSV replication-associated protein gene (rep), which is essential for virus replication and is therefore a good target for post-transcriptional gene silencing; and (ii) an inverted repeat of the viral long intergenic region (LIR), considered for its potential to trigger transcriptional silencing of the viral promoter region. After co-bombardment of cultured maize cells with each construct and an infectious partial dimer of the cognate virus genome (MSV-Kom), followed by viral replicative-form-specific PCR, it was clear that, whilst the hairpin rep construct (pHPrepΔI(662)) completely inhibited MSV replication, the LIR hairpin construct was ineffective in this regard. In addition, pHPrepΔI(662) inhibited or reduced replication of six MSV-A genotypes representing the entire breadth of known MSV-A diversity. Further investigation by real-time PCR revealed that the pHPrepΔI(662) inverted repeat was 22-fold more effective at reducing virus replication than a construct containing the sense copy, whilst the antisense copy had no effect on replication when compared with the wild type. This is the first indication that an hpRNA strategy targeting MSV rep has the potential to protect transgenic maize against diverse MSV-A genotypes found throughout sub-Saharan Africa.


Assuntos
Inativação Gênica , Vírus do Listrado do Milho/fisiologia , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Replicação Viral , Geminiviridae , Vírus do Listrado do Milho/genética , Doenças das Plantas/virologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Migrantes
18.
Arch Virol ; 156(2): 335-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21153747

RESUMO

Although monocotyledonous-plant-infecting mastreviruses (in the family Geminiviridae) are known to cause economically significant crop losses in certain areas of the world, in Australia, they pose no obvious threat to agriculture. Consequently, only a few Australian monocot-infecting mastreviruses have been described, and only two have had their genomes fully sequenced. Here, we present the third full-genome sequence of an Australian monocot-infecting mastrevirus from Bromus catharticus belonging to a distinct species, which we have tentatively named Bromus catharticus striate mosaic virus (BCSMV). Although the genome of this new virus shares only 57.7% sequence similarity with that of its nearest known relative, Digitaria didactyla striate mosaic virus (DDSMV; also from Australia), it has features typical of all other known mastrevirus genomes. Phylogenetic analysis showed that both the full genome and each of its probable expressed proteins group with the two other characterised Australian monocot-infecting mastreviruses. Besides the BCSMV genome sequence revealing that Australian monocot-infecting mastrevirus diversity rivals that seen in Africa, it has enabled us, for the first, to time detect evidence of recombination amongst the Australian viruses. Specifically, it appears that DDSMV possesses a short intergenic region sequence that has been recombinationally derived from either BCSMV or a close relative that has not yet been identified.


Assuntos
Bromus/virologia , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Motivos de Aminoácidos , Sequência de Aminoácidos , Austrália , Evolução Molecular , Geminiviridae/classificação , Genoma Viral , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , Recombinação Genética , Proteínas Virais/genética
19.
Mol Plant Pathol ; 11(1): 1-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20078771

RESUMO

UNLABELLED: Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. TAXONOMY: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. PHYSICAL PROPERTIES: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 x 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. DISEASE SYMPTOMS: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. DISEASE CONTROL: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maize genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. USEFUL WEBSITES: http://www.mcb.uct.ac.za/MSV/mastrevirus.htm; http://www.danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus.htm.


Assuntos
Vírus do Listrado do Milho/patogenicidade , Evolução Biológica , Genes Virais , Variação Genética , Vírus do Listrado do Milho/genética , Zea mays/virologia
20.
J Gen Virol ; 91(Pt 4): 1077-81, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20032206

RESUMO

Geminiviruses of the genera Begomovirus and Curtovirus utilize three replication modes: complementary-strand replication (CSR), rolling-circle replication (RCR) and recombination-dependent replication (RDR). Using two-dimensional gel electrophoresis, we now show for the first time that maize streak virus (MSV), the type member of the most divergent geminivirus genus, Mastrevirus, does the same. Although mastreviruses have fewer regulatory genes than other geminiviruses and uniquely express their replication-associated protein (Rep) from a spliced transcript, the replicative intermediates of CSR, RCR and RDR could be detected unequivocally within infected maize tissues. All replicative intermediates accumulated early and, to varying degrees, were already present in the shoot apex and leaves at different maturation stages. Relative to other replicative intermediates, those associated with RCR increased in prevalence during leaf maturation. Interestingly, in addition to RCR-associated DNA forms seen in other geminiviruses, MSV also apparently uses dimeric open circular DNA as a template for RCR.


Assuntos
Vírus do Listrado do Milho/fisiologia , Replicação Viral , Zea mays/virologia , Vírus do Listrado do Milho/genética , Folhas de Planta/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Recombinação Genética , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...