Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e32794, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975128

RESUMO

Thermoplastic polyurethane (TPU) doped with multi-walled carbon nanotubes (MWCNTs) at 1, 3, 5, and 7 wt% has been studied. The effect of MWCNTs on thermal, viscoelastic, and electric properties in the TPU matrix was characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and by impedance spectroscopy. The results show that the thermal, electrical, and viscoelastic properties, such as the glass transition temperature, shifted towards high temperatures. The melting temperature decreased, and the conductivity and the storage modulus increased by 61.5 % and 58.3 %. The previously observed behavior on the films is due to the increase in the mass percentage of carbon nanotubes (CNTs) in the TPU matrix. Also, it can be said that the CNTs were homogeneously dispersed in the TPU matrix, preventing the movement of the polymer chains, and generating channels or connections that increase the conductivity and improve the thermal properties of the material.

2.
Nanomaterials (Basel) ; 13(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999321

RESUMO

In this research work, the photocatalytic capacity shown by the nanoparticles of the CaTiO3 system was evaluated to degrade two pollutants of emerging concern, namely methyl orange (MO)-considered an organic contaminating substance of the textile industry that is non-biodegradable when dissolved in water-and levofloxacin (LVF), an antibiotic widely used in the treatment of infectious diseases that is released mostly to the environment in its original chemical form. The synthesis process used to obtain these powders was the polymeric precursor method (Pechini), at a temperature of 700 °C for 6 h. The characterization of the obtained oxide nanoparticles of interest revealed the presence of a majority perovskite-type phase with an orthorhombic Pbnm structure and a minority rutile-type TiO2 phase, with a P42/mnm structure and a primary particle size <100nm. The adsorption-desorption isotherms of the synthesized solids had H3-type hysteresis loops, characteristic of mesoporous solids, with a BET surface area of 10.01m2/g. The Raman and FTIR spectroscopy results made it possible to identify the characteristic vibrations of the synthesized system and the characteristic deformations of the perovskite structure, reiterating the results obtained from the XRD analysis. Furthermore, a bandgap energy of ~3.4eV and characteristic emissions in the violet (437 nm/2.8 eV) and orange (611 nm/2.03 eV) were determined for excitation lengths of 250 nm and 325 nm, respectively, showing that these systems have a strong emission in the visible light region and allowing their use in photocatalytic activity to be potentialized. The powders obtained were studied for their photocatalytic capacity to degrade methyl orange (MO) and levofloxacin (LVF), dissolved in water. To quantify the coloring concentration, UV-visible spectroscopy was used considering the variation in the intensity of the characteristic of the greatest absorption, which correlated with the change in the concentration of the contaminant in the solution. The results showed that after irradiation with ultraviolet light, the degradation of the contaminants MO and LVF was 79.4% and 98.1% with concentrations of 5 g/L and 10 g/L, respectively.

3.
Molecules ; 28(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110832

RESUMO

The impacts on the morphological, electrical and hardness properties of thermoplastic polyurethane (TPU) plates using multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers have been investigated, using MWCNT loadings between 1 and 7 wt%. Plates of the TPU/MWCNT nanocomposites were fabricated by compression molding from extruded pellets. An X-ray diffraction analysis showed that the incorporation of MWCNTs into the TPU polymer matrix increases the ordered range of the soft and hard segments. SEM images revealed that the fabrication route used here helped to obtain TPU/MWCNT nanocomposites with a uniform dispersion of the nanotubes inside the TPU matrix and promoted the creation of a conductive network that favors the electronic conduction of the composite. The potential of the impedance spectroscopy technique has been used to determine that the TPU/MWCNT plates exhibited two conduction mechanisms, percolation and tunneling conduction of electrons, and their conductivity values increase as the MWCNT loading increases. Finally, although the fabrication route induced a hardness reduction with respect to the pure TPU, the addition of MWCNT increased the Shore A hardness behavior of the TPU plates.

4.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110859

RESUMO

CdS:Al thin films were fabricated on a glass substrate using the CBD method. The effect of aluminum incorporation on the structural, morphological, vibrational, and optical properties of CdS thin layers was investigated by X-ray diffraction (XRD), Raman spectroscopy (RS), atomic force microscopy (AFM), scanning electron microscopy (SEM), and UV-visible (UV-vis) and photoluminescence (PL) spectroscopies. XRD analysis of deposited thin films confirmed a hexagonal structure with a preferred (002) orientation in all samples. The crystallite size and surface morphology of the films are modified with aluminum content. Raman spectra exhibit fundamental longitudinal optical (LO) vibrational modes and their overtones. Optical properties were studied for each thin film. Here, it was observed that the optical properties of thin films are affected by the incorporation of aluminum into the CdS structure.

5.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144865

RESUMO

The superionic conductor, solid state, and body-centered cubic structure, silver iodide at room temperature, has been studied via molecular dynamics simulations. The calculated results using pairwise Coulomb-Buckingham potential, zero pressure on the sample, a semi-rigid model system of 1000 Ag and 1000 I ions, (NVE) as a statistical ensemble, and an effective charge of Z=0.63 for the pairs Ag-Ag and I-I, were found to be consistent with experimental data and one study using Z=0.60, different potential, and simulation software. For the pair Ag-I, there is a discrepancy due to the high silver ion diffusion. The calculated value of the diffusion constant of the silver ion is greater than iodide ion. The dynamic transport properties (mean square displacement, velocity autocorrelation function) results indicated typical behavior reported by other authors, using different potentials in their DM simulations for iodine and silver ions.

6.
Nanomaterials (Basel) ; 12(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35957006

RESUMO

Thin films of BiFeO3, VO2, and BiFeO3/VO2 were grown on SrTiO3(100) and Al2O3(0001) monocrystalline substrates using radio frequency and direct current sputtering techniques. To observe the effect of the coupling between these materials, the surface of the films was characterized by profilometry, atomic force microscopy, and X-ray photoelectron spectroscopy. The heterostructures, monolayers, and bilayers based on BiFeO3 and VO2 grew with good adhesion and without delamination or signs of incompatibility between the layers. A good granular arrangement and RMS roughness between 1 and 5 nm for the individual layers (VO2 and BiFeO3) and between 6 and 18 nm for the bilayers (BiFeO3/VO2) were observed. Their grain size is between 20 nm and 26 nm for the individual layers and between 63 nm and 67 nm for the bilayers. X-ray photoelectron spectroscopy measurements show a higher proportion of V4+, Bi3+, and Fe3+ in the films obtained. The homogeneous ordering, low roughness, and oxidation states on the obtained surface show a good coupling in these films. The I-V curves show ohmic behavior at room temperature and change with increasing temperature. The effect of coupling these materials in a thin film shows the appearance of hysteresis cycles, I-V and R-T, which is typical of materials with high potential in applications, such as resistive memories and solar cells.

7.
Materials (Basel) ; 15(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955201

RESUMO

High-purity TiO2 and CuO powders were synthesized by the Pechini method, an inexpensive and easy-to-implement procedure to synthetize metal oxides. The variables of synthesis were the ethylene glycol:citric acid molar ratio and the pH. High reproducibility of the anatase and tenorite phase was obtained for all synthesis routes. The degree of purity of the powders was confirmed by XRD, FTIR, UV-Vis absorption and XPS spectra. SEM and TEM images revealed the powders are composed of micrometer grains that can have a spherical shape (only in the TiO2) or formed by a non-compacted nanocrystalline conglomerate. FTIR spectra only displayed vibrational modes associating TiO2 and CuO with nanoparticle behavior. UV-Vis absorption spectra revealed the values of maximum absorbance percentage of both systems are reached in the ultraviolet region, with percentages above 83% throughout the entire visible light spectrum for the CuO system, a relevant result for solar cell applications. Finally, XPS experiments allow the observation of the valence bands and the calculation of the energy bands of all oxides.

8.
Heliyon ; 8(3): e09028, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342833

RESUMO

Pollution by polymeric materials - in particular plastics - has a negative effect on the health of our planet. Approximately 4.9 billion tons of plastic are estimated to have been improperly disposed of, with the environment as their final destination. This scenario comes from a linear economic system, extraction-production-consumption and finally disposal. The alarming panorama has created the need to find technological solutions that generate new uses for discarded polymeric materials or turn them into part of the production process to produce new and novel materials, such as carbon nanotubes, graphene, or other carbonaceous materials of high added value, modifying the economy for a circular and sustainable production model. This review highlights the negative impact that the disposal of plastic materials has on the environment and the research needs that allow solving the pollution problems generated in the environment by these wastes. Also, the review highlights the current and future directions of recovery plastic waste research-based to promote innovations in the plastic production sector that could allow obtaining breakpoints in other industrial sectors with the technology-based companies.

9.
Data Brief ; 29: 105203, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32055670

RESUMO

In this work, data on a temperature-dependent thermic and electrical properties in a novel blend polymer electrolyte membranes based on poly(vinyl alcohol) (PVA) and chitosan (CS) doped with H3PO4 at different concentrations were prepared by solution casting method. Their phase behavior and ionic conductivity were studied by DSC, TGA and IS. These membranes exhibit good proton conductivity of the order of 10-2 Scm-1 at 200 °C and the understanding of the H3PO4 at different concentrations effect in the polymer electrolyte membranes is crucial for possible applications in fuel cells. The data have not been reported nor discussed in the research paper to be submitting.

10.
Data Brief ; 28: 104865, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31872003

RESUMO

This article presents the data on a parametric temperature dependent potential for ß-PbF2 using molecular dynamics (MD) simulations in the rigid ion approach. The ß-PbF2 is an important ionic conductor that exhibit a super ionic behavior at 711 K. The understanding of the temperature effect in its properties is crucial for possible applications in electrode for solid state batteries, Cherenkov detectors, and rare earth host for scintillation screen. The simulations were done in the DL_POLY Classic 1.9 package employing the Buckingham pair-potential type. The data have not been reported nor discussed in the research paper to be submitting.

11.
Data Brief ; 25: 104183, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31334316

RESUMO

This article presents the data on α-Fe2O3 nanoparticles synthesized via Pechini method using iron(III) oxide precursor from steel industry. It is important to highlight the added value that is given to an industrial waste. The samples were characterized by thermal analysis (DTA, TG), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The TG showed three mass changes, whereas DTA resulted in three anomalies. X-ray diffraction pattern of the samples disclosed rhombohedral structure characteristic of the nanocrystalline α-Fe2O3 phase. The crystallite size was estimated for each thermal treatment. Fourier transform infrared spectroscopy confirms the phase purity of prepared nanoparticles. A detailed study on the local structure of the samples was carry out in the region of 800 and 400 cm-1, where the associated bands of Fe-O bonds are presents. The data have not been reported nor discussed for now.

12.
Materials (Basel) ; 12(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875798

RESUMO

We report here on the development of composite thick films exhibiting hybrid superconducting and ferromagnetic properties, produced through a low-cost, fast, and versatile process. These films were made of high Tc cuprate superconductor Bi2Sr2(Ca,Y)2Cu3O10 (with Y:Ca ratio of 5%) and ferromagnetic perovskite La2/3Ba1/3MnO3, synthesized by melting-quenching annealing process on a MgO substrate. Curie temperature for La2/3Ba1/3MnO3 was determined (~336 K ) by magnetic field assisted thermogravimetric analysis (TGA), while superconducting behavior of Bi2Sr2(Ca,Y)2Cu3O10/MgO films was observed through temperature-dependent resistance measurements. Superconducting features in our hybrid compound were corroborated by temperature-dependent resistivity and magnetic susceptibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...