Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dev Orig Health Dis ; 13(6): 800-805, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35241213

RESUMO

The COVID-19 pandemic has exposed several inequalities worldwide, including the populations' access to healthcare systems and economic differences that impact the access to vaccination, medical resources, and health care services. Scientific research activities were not an exception, such that scientific research was profoundly impacted globally. Research trainees and early career researchers (ECRs) are the life force of scientific discovery around the world, and their work and progress in research was dramatically affected by the COVID-19 pandemic. ECRs are a particularly vulnerable group as they are in a formative stage of their scientific careers, any disruptions during which is going to likely impact their lifelong career trajectory. To understand how COVID-19 impacted lives, career development plans, and research of Developmental Origins of Health and Disease (DOHaD) ECRs, the International DOHaD ECR committee formed a special interest group comprising of ECR representatives of International DOHaD affiliated Societies/Chapters from around the world (Australia and New Zealand, Canada, French Speaking DOHaD, Japan, Latin America, Pakistan and USA). The anecdotal evidence summarized in this brief report, provide an overview of the findings of this special interest group, specifically on the impact of the evolving COVID-19 pandemic on daily research activities and its effects on career development plans of ECRs. We also discuss how our learnings from these shared experiences can strengthen collaborative work for the current and future generation of scientists.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Atenção à Saúde , Paquistão , Pandemias , Pesquisadores
2.
Cells ; 11(4)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203241

RESUMO

Dysfunctions in the intestinal barrier, associated with an altered paracellular pathway, are commonly observed in inflammatory bowel disease (IBD). The AMP-activated protein kinase (AMPK), principally known as a cellular energy sensor, has also been shown to play a key role in the stabilization and assembly of tight junctions. Here, we aimed to investigate the contribution of intestinal epithelial AMPK to the initiation, progression and resolution of acute colitis. We also tested the hypothesis that protection mediated by metformin administration on intestinal epithelium damage required AMPK activation. A dextran sodium sulfate (DSS)-induced colitis model was used to assess disease progression in WT and intestinal epithelial cell (IEC)-specific AMPK KO mice. Barrier integrity was analyzed by measuring paracellular permeability following dextran-4kDa gavage and pro-inflammatory cytokines and tight junction protein expression. The deletion of intestinal epithelial AMPK delayed intestinal injury repair after DSS exposure and was associated with a slower re-epithelization of the intestinal mucosa coupled with severe ulceration and inflammation, and altered barrier function. Following intestinal injury, IEC AMPK KO mice displayed a lower goblet cell counts with concomitant decreased Muc2 gene expression, unveiling an impaired restitution of goblet cells and contribution to wound healing process. Metformin administration during the recovery phase attenuated the severity of DSS-induced colitis through improvement in intestinal repair capacity in both WT and IEC AMPK KO mice. Taken together, these findings demonstrate a critical role for IEC-expressed AMPK in regulating mucosal repair and epithelial regenerative capacity following acute colonic injury. Our studies further underscore the therapeutic potential of metformin to support repair of the injured intestinal epithelium, but this effect is conferred independently of intestinal epithelial AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP , Colite , Metformina , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Metformina/farmacologia , Camundongos , Camundongos Knockout
4.
Cell Mol Life Sci ; 78(24): 8157-8164, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34731253

RESUMO

This study aims to remind that Intestinal Passage (IP) measurement is a complex task that cannot be achieved by a unique measure of an orally given exogenous marker in blood or urine. This will be illustrated in the case of NOD mice. Indeed, various methods have been proposed to measure IP. Among them ex vivo measurement in Ussing chambers of luminal to serosal fluxes of exogenous markers and in vivo measurement of exogenous markers in blood or urine after oral gavage are the more commonly used. Even though they are commonly used indifferently, they do not give the same information and can provide contradictory results. Published data showed that diabetic status in female Non Obese Diabetic (NOD) mice increased FD4 concentration in blood after gavage but did not modify FD4 fluxes in Ussing chamber. We observed the same results in our experimental conditions and tracked FD4 concentrations in blood over a kinetic study (Area Under the Curve-AUC). In vivo measurements are a dynamic process and address not only absorption (IP and intestinal surface) but also distribution, metabolism and excretion (ADME). Diabetic status in NOD mice was associated with an increase of intestinal length (absorptive surface), itself positively correlated with AUC of FD4 in blood. We concluded that increased intestinal length induced by diabetic status will extend the absorptive surface and increase FD4 concentration in plasma (in vivo measurement) despite no modification on IP of FD4 (ex vivo measurement). In addition, this study characterized intestinal function in diabetic NOD mice. Diabetic status in NOD female mice increases intestinal length and decreases paracellular IP (FSS) without affecting transcellular IP (HRP, FD4). Histological studies of small and large intestine did not show any modification of intestinal circumference nor villi and crypt size. Finally, diabetic status was not associated with intestinal inflammation (ELISA).


Assuntos
Permeabilidade da Membrana Celular , Dextranos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Epiteliais/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Absorção Intestinal , Mucosa Intestinal/metabolismo , Animais , Transporte Biológico , Diabetes Mellitus Experimental/patologia , Feminino , Fluoresceína-5-Isotiocianato/metabolismo , Camundongos , Camundongos Endogâmicos NOD
5.
Mol Metab ; 47: 101183, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548500

RESUMO

OBJECTIVE: The intestinal epithelial barrier (IEB) restricts the passage of microbes and potentially harmful substances from the lumen through the paracellular space, and rupture of its integrity is associated with a variety of gastrointestinal disorders and extra-digestive diseases. Increased IEB permeability has been linked to disruption of metabolic homeostasis leading to obesity and type 2 diabetes. Interestingly, recent studies have uncovered compelling evidence that the AMP-activated protein kinase (AMPK) signaling pathway plays an important role in maintaining epithelial cell barrier function. However, our understanding of the function of intestinal AMPK in regulating IEB and glucose homeostasis remains sparse. METHODS: We generated mice lacking the two α1 and α2 AMPK catalytic subunits specifically in intestinal epithelial cells (IEC AMPK KO) and determined the physiological consequences of intestinal-specific deletion of AMPK in response to high-fat diet (HFD)-induced obesity. We combined histological, functional, and integrative analyses to ascertain the effects of gut AMPK loss on intestinal permeability in vivo and ex vivo and on the development of obesity and metabolic dysfunction. We also determined the impact of intestinal AMPK deletion in an inducible mouse model (i-IEC AMPK KO) by measuring IEB function, glucose homeostasis, and the composition of gut microbiota via fecal 16S rRNA sequencing. RESULTS: While there were no differences in in vivo intestinal permeability in WT and IEC AMPK KO mice, ex vivo transcellular and paracellular permeability measured in Ussing chambers was significantly increased in the distal colon of IEC AMPK KO mice. This was associated with a reduction in pSer425 GIV phosphorylation, a marker of leaky gut barrier. However, the expression of tight junction proteins in intestinal epithelial cells and pro-inflammatory cytokines in the lamina propria were not different between genotypes. Although the HFD-fed AMPK KO mice displayed suppression of the stress polarity signaling pathway and a concomitant increase in colon permeability, loss of intestinal AMPK did not exacerbate body weight gain or adiposity. Deletion of AMPK was also not sufficient to alter glucose homeostasis or the acute glucose-lowering action of metformin in control diet (CD)- or HFD-fed mice. CD-fed i-IEC AMPK KO mice also presented higher permeability in the distal colon under homeostatic conditions but, surprisingly, this was not detected upon HFD feeding. Alteration in epithelial barrier function in the i-IEC AMPK KO mice was associated with a shift in the gut microbiota composition with higher levels of Clostridiales and Desulfovibrionales. CONCLUSIONS: Altogether, our results revealed a significant role of intestinal AMPK in maintaining IEB integrity in the distal colon but not in regulating glucose homeostasis. Our data also highlight the complex interaction between gut microbiota and host AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Colo/metabolismo , Glucose/metabolismo , Homeostase , Animais , Bactérias/classificação , Bactérias/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Masculino , Metformina/farmacologia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Permeabilidade/efeitos dos fármacos , RNA Ribossômico 16S
6.
Front Immunol ; 11: 1823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983091

RESUMO

Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic, and environmental factors characterized by an inappropriate immune response toward self-antigens. In the past decades, there has been a continuous rise in the incidence of ADs, which cannot be explained by genetic factors alone. Influence of psychological stress on the development or the course of autoimmune disorders has been discussed for a long time. Indeed, based on epidemiological studies, stress has been suggested to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling data showed that most of ADs are associated with gastrointestinal symptoms, that is, microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation. Interestingly, social stress (acute or chronic, in adult or in neonate) is a well-described intestinal disrupting factor. Taken together, those observations question a potential role of stress-induced defect of the intestinal barrier in the onset and/or the course of ADs. In this review, we aim to present evidences supporting the hypothesis for a role of stress-induced intestinal barrier disruption in the onset and/or the course of ADs. We will mainly focus on autoimmune type 1 diabetes, multiple sclerosis and systemic lupus erythematosus, ADs for which we could find sufficient circumstantial data to support this hypothesis. We excluded gastrointestinal (GI) ADs like coeliac disease to privilege ADs not focused on intestinal disorders to avoid confounding factors. Indeed, GIADs are characterized by antibodies directed against intestinal barrier actors.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade , Mucosa Intestinal/imunologia , Estresse Psicológico/imunologia , Animais , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/microbiologia , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Disbiose , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lúpus Eritematoso Sistêmico/epidemiologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/microbiologia , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/microbiologia , Permeabilidade , Fatores de Risco , Estresse Psicológico/epidemiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia
7.
Brain Behav Immun ; 80: 452-463, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30981713

RESUMO

Early life stress is known to impair intestinal barrier through induction of intestinal hyperpermeability, low-grade inflammation and microbiota dysbiosis in young adult rodents. Interestingly, those features are also observed in metabolic disorders (obesity and type 2 diabetes) that appear with ageing. Based on the concept of Developmental Origins of Health and Diseases, our study aimed to investigate whether early life stress can trigger metabolic disorders in ageing mice. Maternal separation (MS) is a well-established model of early life stress in rodent. In this study, MS increased fasted blood glycemia, induced glucose intolerance and decreased insulin sensitivity in post-natal day 350 wild type C3H/HeN male mice fed a standard diet without affecting body weight. MS also triggered fecal dysbiosis favoring pathobionts and significantly decreased IL-17 and IL-22 secretion in response to anti-CD3/CD28 stimulation in small intestine lamina propria. Finally, IL-17 secretion in response to anti-CD3/CD28 stimulation was also diminished at systemic level (spleen). For the first time, we demonstrate that early life stress is a risk factor for metabolic disorders development in ageing wild type mice under normal diet.


Assuntos
Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Diabetes Mellitus Tipo 2/complicações , Disbiose/metabolismo , Feminino , Microbioma Gastrointestinal/fisiologia , Intolerância à Glucose/fisiopatologia , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Masculino , Privação Materna , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...