Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mutat Res ; 773: 16-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25769182

RESUMO

Transposons, especially retrotransposons, are abundant in the genome of Drosophila melanogaster. These mobile elements are regulated by small RNAs that interact with the Piwi family of proteins-the piwi-interacting or piRNAs. The Piwi proteins are encoded by the genes argonaute3 (ago3), aubergine (aub), and piwi. Heterochromatin Protein 1 (HP1), a chromatin-organizing protein encoded by the Suppressor of variegation 205 [Su(var)205] gene, also plays a role in this regulation. To assess the mutational impact of weakening the system for transposon regulation, we measured the frequency of recessive X-linked lethal mutations occurring in the germ lines of males from stocks that were heterozygous for mutant alleles of the ago3, aub, piwi, or Su(var)205 genes. These mutant alleles are expected to deplete the wild-type proteins encoded by these genes by as much as 50%. The mutant alleles of piwi and Su(var)205 significantly increased the X-linked lethal mutation frequency, whereas the mutant alleles of ago3 did not. An increased mutation frequency was also observed in males from one of two mutant aub stocks, but this increase may not have been due to the aub mutant. The increased mutation frequency caused by depleting Piwi or HP1suggests that chromatin-organizing proteins play important roles in minimizing the germ-line mutation rate, possibly by stabilizing the structure of the heterochromatin in which many transposons are situated.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Mutação em Linhagem Germinativa , RNA Interferente Pequeno/fisiologia , Animais , Proteínas Argonautas/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Masculino , Fatores de Iniciação de Peptídeos/genética
2.
Genet Res (Camb) ; 91(6): 383-94, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20122295

RESUMO

The X-linked telomeric P elements TP5 and TP6 interact synergistically with non-telomeric P elements to repress hybrid dysgenesis. In this repression, the telomeric P elements exert maternal effects, which, however, are not sufficient to establish synergism with the non-telomeric P elements. Once synergism is established, the capacity to repress dysgenesis in the offspring of a cross persists for at least two generations after removing the telomeric P element from the genotype. At the molecular level, synergism between telomeric and non-telomeric P elements is correlated with effective elimination of P-element mRNA in the germ line. Maternally transmitted mutations in the genes aubergine, piwi and Suppressor of variegation 205 [Su(var)205] block the establishment of synergism between telomeric and non-telomeric P elements, and paternally transmitted mutations in piwi and Su(var)205 disrupt synergism that has already been established. These findings are discussed in terms of a model of cytotype regulation of P elements based on Piwi-interacting RNAs (piRNAs) that are amplified by cycling between sense and antisense species.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Telômero/genética , Animais , Animais Geneticamente Modificados , Homólogo 5 da Proteína Cromobox , Cruzamentos Genéticos , Proteínas de Drosophila , Genes de Insetos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA