Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Access ; 8: 77888-77902, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354488

RESUMO

Post Translational Modification (PTM) is considered an important biological process with a tremendous impact on the function of proteins in both eukaryotes, and prokaryotes cells. During the past decades, a wide range of PTMs has been identified. Among them, malonylation is a recently identified PTM which plays a vital role in a wide range of biological interactions. Notwithstanding, this modification plays a potential role in energy metabolism in different species including Homo Sapiens. The identification of PTM sites using experimental methods is time-consuming and costly. Hence, there is a demand for introducing fast and cost-effective computational methods. In this study, we propose a new machine learning method, called Mal-Light, to address this problem. To build this model, we extract local evolutionary-based information according to the interaction of neighboring amino acids using a bi-peptide based method. We then use Light Gradient Boosting (LightGBM) as our classifier to predict malonylation sites. Our results demonstrate that Mal-Light is able to significantly improve malonylation site prediction performance compared to previous studies found in the literature. Using Mal-Light we achieve Matthew's correlation coefficient (MCC) of 0.74 and 0.60, Accuracy of 86.66% and 79.51%, Sensitivity of 78.26% and 67.27%, and Specificity of 95.05% and 91.75%, for Homo Sapiens and Mus Musculus proteins, respectively. Mal-Light is implemented as an online predictor which is publicly available at: (http://brl.uiu.ac.bd/MalLight/).

2.
Comput Biol Med ; 125: 104022, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022522

RESUMO

Post Transactional Modification (PTM) is a vital process which plays an important role in a wide range of biological interactions. One of the most recently identified PTMs is Malonylation. It has been shown that Malonylation has an important impact on different biological pathways including glucose and fatty acid metabolism. Malonylation can be detected experimentally using mass spectrometry. However, this process is both costly and time-consuming which has inspired research to find more efficient and fast computational methods to solve this problem. This paper proposes a novel approach, called SEMal, to identify Malonylation sites in protein sequences. It uses both structural and evolutionary-based features to solve this problem. It also uses Rotation Forest (RoF) as its classification technique to predict Malonylation sites. To the best of our knowledge, our extracted features as well as our employed classifier have never been used for this problem. Compared to the previously proposed methods, SEMal outperforms them in all metrics such as sensitivity (0.94 and 0.89), accuracy (0.94 and 0.91), and Matthews correlation coefficient (0.88 and 0.82), for Homo Sapiens and Mus Musculus species, respectively. SEMal is publicly available as an online predictor at: http://brl.uiu.ac.bd/SEMal/.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Evolução Biológica , Humanos , Lisina/metabolismo , Camundongos
3.
Genes (Basel) ; 11(9)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878321

RESUMO

Post Translational Modification (PTM) is defined as the alteration of protein sequence upon interaction with different macromolecules after the translation process. Glutarylation is considered one of the most important PTMs, which is associated with a wide range of cellular functioning, including metabolism, translation, and specified separate subcellular localizations. During the past few years, a wide range of computational approaches has been proposed to predict Glutarylation sites. However, despite all the efforts that have been made so far, the prediction performance of the Glutarylation sites has remained limited. One of the main challenges to tackle this problem is to extract features with significant discriminatory information. To address this issue, we propose a new machine learning method called BiPepGlut using the concept of a bi-peptide-based evolutionary method for feature extraction. To build this model, we also use the Extra-Trees (ET) classifier for the classification purpose, which, to the best of our knowledge, has never been used for this task. Our results demonstrate BiPepGlut is able to significantly outperform previously proposed models to tackle this problem. BiPepGlut achieves 92.0%, 84.8%, 95.6%, 0.82, and 0.88 in accuracy, sensitivity, specificity, Matthew's Correlation Coefficient, and F1-score, respectively. BiPepGlut is implemented as a publicly available online predictor.


Assuntos
Evolução Molecular , Glutaratos/química , Lisina/química , Mycobacterium tuberculosis/metabolismo , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Animais , Biologia Computacional , Glutaratos/metabolismo , Lisina/metabolismo , Aprendizado de Máquina , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fragmentos de Peptídeos/metabolismo , Proteínas/metabolismo , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...