Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 135(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35393611

RESUMO

At the plasma membrane of mammalian cells, major histocompatibility complex class I molecules (MHC-I) present antigenic peptides to cytotoxic T cells. Following the loss of the peptide and the light chain beta-2 microglobulin (ß2m, encoded by B2M), the resulting free heavy chains (FHCs) can associate into homotypic complexes in the plasma membrane. Here, we investigate the stoichiometry and dynamics of MHC-I FHCs assemblies by combining a micropattern assay with fluorescence recovery after photobleaching (FRAP) and with single-molecule co-tracking. We identify non-covalent MHC-I FHC dimers, with dimerization mediated by the α3 domain, as the prevalent species at the plasma membrane, leading a moderate decrease in the diffusion coefficient. MHC-I FHC dimers show increased tendency to cluster into higher order oligomers as concluded from an increased immobile fraction with higher single-molecule colocalization. In vitro studies with isolated proteins in conjunction with molecular docking and dynamics simulations suggest that in the complexes, the α3 domain of one FHC binds to another FHC in a manner similar to that seen for ß2m.


Assuntos
Antígenos de Histocompatibilidade Classe I , Microglobulina beta-2 , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Ligação Proteica , Microglobulina beta-2/metabolismo
2.
Elife ; 72018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30180933

RESUMO

We demonstrate a two-hybrid assay based on antibody micropatterns to study protein-protein interactions at the cell surface of major histocompatibility complex class I (MHC I) proteins. Anti-tag and conformation-specific antibodies are used for individual capture of specific forms of MHC I proteins that allow for location- and conformation-specific analysis by fluorescence microscopy. The assay is used to study the in cis interactions of MHC I proteins at the cell surface under controlled conditions and to define the involved protein conformations. Our results show that homotypic in cis interactions occur exclusively between MHC I free heavy chains, and we identify the dissociation of the light chain from the MHC I protein complex as a condition for MHC I in cis interactions. The functional role of these MHC I protein-protein interactions at the cell surface needs further investigation. We propose future technical developments of our two-hybrid assay for further analysis of MHC I protein-protein interactions.


Assuntos
Anticorpos/metabolismo , Membrana Celular/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Animais , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Peptídeos/metabolismo , Multimerização Proteica
3.
Eng Life Sci ; 18(2): 124-131, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32624894

RESUMO

Micrometer-sized patterns of proteins on glass or silica surfaces are in widespread use as protein arrays for probing with ligands or recombinant proteins. More recently, they have been used to capture the surface proteins of mammalian cells seeded onto them, and to arrange these surface proteins into pattern structures. Binding of small molecule ligands or of other proteins, transmembrane or intracellular, to these captured surface proteins can then be quantified. However, reproducible production of protein micropatterns on surfaces can be technically difficult. In this review, we outline the wide potential and the current practical uses of printed protein micropatterns in a historical overview, and we detail some potential pitfalls and difficulties from our own experience, as well as ways to circumvent them.

4.
Small ; 13(15)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28151581

RESUMO

Binding assays with fluorescently labeled ligands and recombinant receptor proteins are commonly performed in 2D arrays. But many cell surface receptors only function in their native membrane environment and/or in a specific conformation, such as they appear on the surface of live cells. Thus, receptors on live cells should be used for ligand binding assays. Here, it is shown that antibodies preprinted on a glass surface can be used to specifically array a peptide receptor of the immune system, i.e., the major histocompatibility complex class I molecule H-2Kb , into a defined pattern on the surface of live cells. Monoclonal antibodies make it feasible to capture a distinct subpopulation of H-2Kb and hold it at the cell surface. This patterned receptor enables a novel peptide-binding assay, in which the specific binding of a fluorescently labeled index peptide is visualized by microscopy. Measurements of ligand binding to captured cell surface receptors in defined confirmations apply to many problems in cell biology and thus represent a promising tool in the field of biosensors.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Animais , Membrana Celular/metabolismo , Sobrevivência Celular , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...