Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 23(8): 3193-3204, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28145106

RESUMO

Crop yields in sub-Saharan Africa remain stagnant at 1 ton ha-1 , and 260 million people lack access to adequate food resources. Order-of-magnitude increases in fertilizer use are seen as a critical step in attaining food security. This increase represents an unprecedented input of nitrogen (N) to African ecosystems and will likely be accompanied by increased soil emissions of nitric oxide (NO). NO is a precursor to tropospheric ozone, an air pollutant and greenhouse gas. Emissions of NO from soils occur primarily during denitrification and nitrification, and N input rates are a key determinant of emission rates. We established experimental maize plots in western Kenya to allow us to quantify the response function relating NO flux to N input rate during the main 2011 and 2012 growing seasons. NO emissions followed a sigmoid response to fertilizer inputs and have emission factors under 1% for the roughly two-month measurement period in each year, although linear and step relationships could not be excluded in 2011. At fertilization rates above 100 kg N ha-1 , NO emissions increased without a concomitant increase in yields. We used the geos-chem chemical transport model to evaluate local impacts of increased NO emissions on tropospheric ozone concentrations. Mean 4-hour afternoon tropospheric ozone concentrations in Western Kenya increased by up to roughly 2.63 ppbv under fertilization rates of 150 kg N ha-1 or higher. Using AOT40, a metric for assessing crop damage from ozone, we find that the increased ozone concentrations result in an increase in AOT40 exposure of approximately 110 ppbh for inputs of 150 kg N ha-1 during the March-April-May crop growing season, compared with unfertilized simulations, with negligible impacts on crop productivity. Our results suggest that it may be possible to manage Kenyan agricultural systems for high yields while avoiding substantial impacts on air quality.


Assuntos
Agricultura , Poluição do Ar , Óxido Nítrico/química , Ozônio , Monitoramento Ambiental , Fertilizantes , Quênia , Solo
2.
PLoS One ; 6(6): e21235, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698127

RESUMO

BACKGROUND: In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD), has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa. METHODS AND FINDINGS: Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level. CONCLUSION: This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are generated and strategies for future research are suggested calling for integration of agriculture, ecology, nutrition, and socio-economics.


Assuntos
Produtos Agrícolas , Valor Nutritivo , Adulto , África Subsaariana/epidemiologia , Anemia Ferropriva/epidemiologia , Feminino , Humanos , População Rural , Deficiência de Vitamina A/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA