Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biol Chem ; 285(21): 16051-65, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20335172

RESUMO

The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 10(7) and 10(6) M(-1) S(-1), respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie approximately 12.3 A apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of alpha-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.


Assuntos
Proteínas de Bactérias/química , Peróxido de Hidrogênio/química , Modelos Químicos , Modelos Moleculares , Peroxirredoxinas/química , Ácido Peroxinitroso/química , Xylella/enzimologia , Proteínas de Bactérias/genética , Catálise , Cristalografia por Raios X , Dissulfetos/química , Ditiotreitol/química , Cinética , Mutagênese Sítio-Dirigida , Peroxirredoxinas/genética , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Xylella/genética
2.
J Mol Biol ; 385(3): 889-901, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18992757

RESUMO

Glutaredoxins (Grxs) are small (9-12 kDa) heat-stable proteins that are ubiquitously distributed. In Saccharomyces cerevisiae, seven Grx enzymes have been identified. Two of them (yGrx1 and yGrx2) are dithiolic, possessing a conserved Cys-Pro-Tyr-Cys motif. Here, we show that yGrx2 has a specific activity 15 times higher than that of yGrx1, although these two oxidoreductases share 64% identity and 85% similarity with respect to their amino acid sequences. Further characterization of the enzymatic activities through two-substrate kinetics analysis revealed that yGrx2 possesses a lower K(M) for glutathione and a higher turnover than yGrx1. To better comprehend these biochemical differences, the pK(a) of the N-terminal active-site cysteines (Cys27) of these two proteins and of the yGrx2-C30S mutant were determined. Since the pK(a) values of the yGrx1 and yGrx2 Cys27 residues are very similar, these parameters cannot account for the difference observed between their specific activities. Therefore, crystal structures of yGrx2 in the oxidized form and with a glutathionyl mixed disulfide were determined at resolutions of 2.05 and 1.91 A, respectively. Comparisons of yGrx2 structures with the recently determined structures of yGrx1 provided insights into their remarkable functional divergence. We hypothesize that the substitutions of Ser23 and Gln52 in yGrx1 by Ala23 and Glu52 in yGrx2 modify the capability of the active-site C-terminal cysteine to attack the mixed disulfide between the N-terminal active-site cysteine and the glutathione molecule. Mutagenesis studies supported this hypothesis. The observed structural and functional differences between yGrx1 and yGrx2 may reflect variations in substrate specificity.


Assuntos
Glutarredoxinas/química , Isoenzimas/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
3.
Artigo em Inglês | MEDLINE | ID: mdl-17671363

RESUMO

Saccharomyces cerevisiae cytosolic thioredoxin peroxidase 1 (cTPxI or Tsa1) is a bifunctional enzyme with protective roles in cellular defence against oxidative and thermal stress that exhibits both peroxidase and chaperone activities. Protein overoxidation and/or high temperatures induce great changes in its quaternary structure and lead to its assembly into large complexes that possess chaperone activity. A recombinant mutant of Tsa1 from S. cerevisiae, with Cys47 substituted by serine, was overexpressed in Escherichia coli as a His(6)-tagged fusion protein and purified by nickel-affinity chromatography. Crystals were obtained from protein previously treated with 1,4-dithiothreitol by the hanging-drop vapour-diffusion method using PEG 3000 as precipitant and sodium fluoride as an additive. Diffraction data were collected to 2.8 A resolution using a synchrotron-radiation source. The crystal structure was solved by molecular-replacement methods and structure refinement is currently in progress.


Assuntos
Citosol/enzimologia , Mutação , Peroxidases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Cisteína/genética , Dados de Sequência Molecular , Peroxidases/genética , Peroxirredoxinas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-17045551

RESUMO

Cysteine plays structural roles in proteins and can also participate in electron transfer reactions, when some structural folds provide appropriated environments for stabilization of its sulfhydryl group in the anionic form, called thiolate (RS(-)). In contrast, sulfhydryl group of free cysteine has a relatively high pK(a) (8,5) and as a consequence is relatively inert for redox reaction in physiological conditions. Thiolate is considerable more powerful as nucleophilic agent than its protonated form, therefore, reactive cysteine are present mainly in its anionic form in proteins. In this review, we describe several processes in which reactive cysteine in proteins take part, showing a high degree of redox chemistry versatility.


Assuntos
Cisteína/metabolismo , Oxirredução , Dobramento de Proteína , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Animais , Cisteína/química , Glutationa/metabolismo , Humanos , Conformação Proteica , Proteínas/química , Tiorredoxinas/metabolismo
5.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1062154

RESUMO

Cysteine plays structural roles in proteins and can also participate in electron transfer reactions, when some structural folds provide appropriatedenvironments for stabilization of its sulfhydryl group in the anionic form, called thiolate (RS−). In contrast, sulfhydryl group of free cysteine has arelatively high pKa (8,5) and as a consequence is relatively inert for redox reaction in physiological conditions. Thiolate is considerable morepowerful as nucleophilic agent than its protonated form, therefore, reactive cysteine are present mainly in its anionic form in proteins. In this review,we describe several processes in which reactive cysteine in proteins take part, showing a high degree of redox chemistry versatility.


Assuntos
Masculino , Feminino , Humanos , Antioxidantes/classificação , Cisteína/metabolismo , Peróxidos/classificação
6.
Artigo em Inglês | MEDLINE | ID: mdl-16511049

RESUMO

Thioredoxin reductase 1 (Trr1) from Saccharomyces cerevisiae is a member of the family of pyridine nucleotide-disulfide oxidoreductases capable of reducing the redox-active disulfide bond of the cytosolic thioredoxin 1 (Trx1) and thioredoxin 2 (Trx2). NADPH, Trr1 and Trx1 (or Trx2) comprise the thioredoxin system, which is involved in several biological processes, including the reduction of disulfide bonds and response to oxidative stress. Recombinant Trr1 was expressed in Escherichia coli as a His6-tagged fusion protein and purified by nickel-affinity chromatography. The protein was crystallized using the hanging-drop vapour-diffusion method in the presence of PEG 3000 as precipitant after treatment with hydrogen peroxide. X-ray diffraction data were collected to a maximum resolution of 2.4 A using a synchrotron-radiation source. The crystal belongs to the centred monoclinic space group C2, with unit-cell parameters a = 127.97, b = 135.41, c = 75.81 A, beta = 89.95 degrees. The crystal structure was solved by molecular-replacement methods and structure refinement is in progress.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Tiorredoxina Dissulfeto Redutase/química , Clonagem Molecular , Cristalização/métodos , Histidina , Polietilenoglicóis , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão , Volatilização , Difração de Raios X
7.
Artigo em Inglês | MEDLINE | ID: mdl-16511065

RESUMO

Glutaredoxins are small (9-12 kDa) heat-stable proteins that are highly conserved throughout evolution; the glutaredoxin active site (Cys-Pro-Tyr-Cys) is conserved in most species. Five glutaredoxin genes have been identified in Saccharomyces cerevisiae; however, Grx2 is responsible for the majority of oxidoreductase activity in the cell, suggesting that its primary function may be the detoxification of mixed disulfides generated by reactive oxygen species (ROS). Recombinant Grx2 was expressed in Escherichia coli as a 6xHis-tagged fusion protein and purified by nickel-affinity chromatography. Prior to crystallization trials, the enzyme was submitted to various treatments with reducing agents and peroxides. Crystals suitable for X-ray diffraction experiments were obtained from untreated protein and protein oxidized with t-butyl hydroperoxide (10 mM). Complete data sets were collected to resolutions 2.15 and 2.05 A for untreated and oxidized Grx2, respectively, using a synchrotron-radiation source. The crystals belong to space group P4(1)2(1)2, with similar unit-cell parameters.


Assuntos
Oxirredutases/química , Proteínas de Saccharomyces cerevisiae/química , Clonagem Molecular , Cristalização/métodos , Escherichia coli/genética , Glutarredoxinas , Histidina/química , Oxirredução , Difração de Raios X , terc-Butil Hidroperóxido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...