Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 28(12): i75-83, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22689782

RESUMO

MOTIVATION: Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which motivates development of computational methods that predict MoRFs from protein chains. RESULTS: We introduce a new MoRF predictor, MoRFpred, which identifies all MoRF types (α, ß, coil and complex). We develop a comprehensive dataset of annotated MoRFs to build and empirically compare our method. MoRFpred utilizes a novel design in which annotations generated by sequence alignment are fused with predictions generated by a Support Vector Machine (SVM), which uses a custom designed set of sequence-derived features. The features provide information about evolutionary profiles, selected physiochemical properties of amino acids, and predicted disorder, solvent accessibility and B-factors. Empirical evaluation on several datasets shows that MoRFpred outperforms related methods: α-MoRF-Pred that predicts α-MoRFs and ANCHOR which finds disordered regions that become ordered when bound to a globular partner. We show that our predicted (new) MoRF regions have non-random sequence similarity with native MoRFs. We use this observation along with the fact that predictions with higher probability are more accurate to identify putative MoRF regions. We also identify a few sequence-derived hallmarks of MoRFs. They are characterized by dips in the disorder predictions and higher hydrophobicity and stability when compared to adjacent (in the chain) residues. AVAILABILITY: http://biomine.ece.ualberta.ca/MoRFpred/; http://biomine.ece.ualberta.ca/MoRFpred/Supplement.pdf.


Assuntos
Biologia Computacional/métodos , Proteínas/análise , Alinhamento de Sequência , Aminoácidos , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Anotação de Sequência Molecular , Estrutura Secundária de Proteína , Máquina de Vetores de Suporte
2.
Curr Protein Pept Sci ; 12(6): 470-89, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21787299

RESUMO

The last few decades observed an increasing interest in development and application of 1-dimensional (1D) descriptors of protein structure. These descriptors project 3D structural features onto 1D strings of residue-wise structural assignments. They cover a wide-range of structural aspects including conformation of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-chain residue-residue contacts. We perform first-of-its-kind comprehensive comparative review of the existing 1D structural descriptors. We define, review and categorize ten structural descriptors and we also describe, summarize and contrast over eighty computational models that are used to predict these descriptors from the protein sequences. We show that the majority of the recent sequence-based predictors utilize machine learning models, with the most popular being neural networks, support vector machines, hidden Markov models, and support vector and linear regressions. These methods provide high-throughput predictions and most of them are accessible to a non-expert user via web servers and/or stand-alone software packages. We empirically evaluate several recent sequence-based predictors of secondary structure, disorder, and solvent accessibility descriptors using a benchmark set based on CASP8 targets. Our analysis shows that the secondary structure can be predicted with over 80% accuracy and segment overlap (SOV), disorder with over 0.9 AUC, 0.6 Matthews Correlation Coefficient (MCC), and 75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6 (0.86 when homology is used). We demonstrate that the secondary structure predicted from sequence without the use of homology modeling is as good as the structure extracted from the 3D folds predicted by top-performing template-based methods.


Assuntos
Biologia Computacional/métodos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas/química , Algoritmos , Aminoácidos/química , Reprodutibilidade dos Testes
3.
Bioinformatics ; 26(18): i489-96, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20823312

RESUMO

MOTIVATION: Intrinsically disordered proteins play a crucial role in numerous regulatory processes. Their abundance and ubiquity combined with a relatively low quantity of their annotations motivate research toward the development of computational models that predict disordered regions from protein sequences. Although the prediction quality of these methods continues to rise, novel and improved predictors are urgently needed. RESULTS: We propose a novel method, named MFDp (Multilayered Fusion-based Disorder predictor), that aims to improve over the current disorder predictors. MFDp is as an ensemble of 3 Support Vector Machines specialized for the prediction of short, long and generic disordered regions. It combines three complementary disorder predictors, sequence, sequence profiles, predicted secondary structure, solvent accessibility, backbone dihedral torsion angles, residue flexibility and B-factors. Our method utilizes a custom-designed set of features that are based on raw predictions and aggregated raw values and recognizes various types of disorder. The MFDp is compared at the residue level on two datasets against eight recent disorder predictors and top-performing methods from the most recent CASP8 experiment. In spite of using training chains with

Assuntos
Estrutura Terciária de Proteína , Proteínas/química , Software , Algoritmos , Sequência de Aminoácidos , Sequência de Bases , Bases de Dados de Proteínas , Estrutura Secundária de Proteína
4.
J Theor Biol ; 259(3): 517-22, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19409396

RESUMO

Due to the slightly success of protein secondary structure prediction using the various algorithmic and non-algorithmic techniques, similar techniques have been developed for predicting gamma-turns in proteins by Kaur and Raghava [2003. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923-929]. However, the major limitation of previous methods was inability in predicting gamma-turn types. In a recent investigation we introduced a sequence based predictor model for predicting gamma-turn types in proteins [Jahandideh, S., Sabet Sarvestani, A., Abdolmaleki, P., Jahandideh, M., Barfeie, M, 2007a. gamma-turn types prediction in proteins using the support vector machines. J. Theor. Biol. 249, 785-790]. In the present work, in order to analyze the effect of sequence and structure in the formation of gamma-turn types and predicting gamma-turn types in proteins, we applied novel hybrid neural discriminant modeling procedure. As the result, this study clarified the efficiency of using the statistical model preprocessors in determining the effective parameters. Moreover, the optimal structure of neural network can be simplified by a preprocessor in the first stage of hybrid approach, thereby reducing the needed time for neural network training procedure in the second stage and the probability of overfitting occurrence decreased and a high precision and reliability obtained in this way.


Assuntos
Modelos Moleculares , Redes Neurais de Computação , Proteínas/genética , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Dados de Sequência Molecular , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...