Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791107

RESUMO

The present study employs X-ray photoelectron spectroscopy (XPS) to analyze plastic samples subjected to degradation processes with the aim to gain insight on the relevant chemical processes and disclose fragmentation mechanisms. Two model plastics, namely polystyrene (PS) and polyethylene (PE), are selected and analyzed before and after artificial UV radiation-triggered weathering, under simulated environmental hydrodynamic conditions, in fresh and marine water for different time intervals. The object of the study is to identify and quantify chemical groups possibly evidencing the occurrence of hydrolysis and oxidation reactions, which are the basis of degradation processes in the environment, determining macroplastic fragmentation. Artificially weathered plastic samples are analyzed also by Raman and FT-IR spectroscopy. Changes in surface chemistry with weathering are revealed by XPS, involving the increase in chemical moieties (hydroxyl, carbonyl, and carboxyl functionalities) which can be correlated with the degradation processes responsible for macroplastic fragmentation. On the other hand, the absence of significant modifications upon plastics weathering evidenced by Raman and FT-IR spectroscopy confirms the importance of investigating plastics surface, which represents the very first part of the materials exposed to degradation agents, thus revealing the power of XPS studies for this purpose. The XPS data on experimentally weathered particles are compared with ones obtained on microplastics collected from real marine environment for investigating the occurring degradation processes.


Assuntos
Espectroscopia Fotoeletrônica , Plásticos , Polietileno , Espectroscopia Fotoeletrônica/métodos , Plásticos/química , Polietileno/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Poliestirenos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Água do Mar/química , Microplásticos/química , Oxirredução
2.
Dalton Trans ; 52(18): 6117-6128, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37066998

RESUMO

Treatment of primary bone malignancies comprises surgery, radiotherapy, chemotherapy, and analgesics. Platinum-based chemotherapeutics, such as cisplatin, are commonly used for the treatment of bone cancer but, despite their success, outcomes are limited by toxicity and resistance. Recently, dinuclear Pt complexes with a bridging geminal bisphosphonate ligand proved to be endowed with selective accumulation in bone tumors or metastases leading to improved efficacy and reduced systemic toxicity. Further improvement could be expected by the use of a bisphosphonate ligand with intrinsic pharmacological activity such as zoledronic acid (ZL). In the present work is reported the synthesis and full characterization of the dinuclear Pt(II) complex [{cis-Pt(NH3)2}2(ZL)]HSO4 which combines two drugs with antitumor activity, cisplatin and zoledronic acid. Both drugs, individually, are already approved by the U.S. Food and Drug Administration and the European Medicinal Agency for clinical use. The in vitro cytotoxicity of the new Pt(II)-ZL complex has been tested against a panel of human tumor cell lines.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Humanos , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Ácido Zoledrônico/farmacologia , Preparações Farmacêuticas , Ligantes , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Difosfonatos/farmacologia
3.
Anal Methods ; 15(10): 1250-1253, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36861684

RESUMO

The development of ultrasensitive analytical detection methods for organophosphorus pesticides such as dimethoate (DMT) plays a key role in healthy food production. DMT is an inhibitor of acetylcholinesterase (AChE), which can lead to the accumulation of acetylcholine and result in symptoms related to the autonomous and central nervous systems. Herein, we report the first spectroscopic and electrochemical study on template removal after an imprinting process from a polypyrrole-based molecularly imprinted polymer (PPy-MIP) film for the detection of DMT. Several template removal procedures were tested and evaluated using X-ray photoelectron spectroscopy. The most effective procedure was achieved in 100 mM NaOH. The proposed DMT PPy-MIP sensor exhibits a limit of detection of (8 ± 2) × 10-12 M.


Assuntos
Impressão Molecular , Praguicidas , Polímeros/química , Dimetoato , Pirróis/química , Impressão Molecular/métodos , Acetilcolinesterase , Compostos Organofosforados
4.
Nanomaterials (Basel) ; 13(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903726

RESUMO

One of the crucial challenges of our time is to effectively use metal and metal oxide nanoparticles (NPs) as an alternative way to combat drug-resistant infections. Metal and metal oxide NPs such as Ag, Ag2O, Cu, Cu2O, CuO, and ZnO have found their way against antimicrobial resistance. However, they also suffer from several limitations ranging from toxicity issues to resistance mechanisms by complex structures of bacterial communities, so-called biofilms. In this regard, scientists are urgently looking for convenient approaches to develop heterostructure synergistic nanocomposites which could overcome toxicity issues, enhance antimicrobial activity, improve thermal and mechanical stability, and increase shelf life. These nanocomposites provide a controlled release of bioactive substances into the surrounding medium, are cost effective, reproducible, and scalable for real life applications such as food additives, nanoantimicrobial coating in food technology, food preservation, optical limiters, the bio medical field, and wastewater treatment application. Naturally abundant and non-toxic Montmorillonite (MMT) is a novel support to accommodate NPs, due to its negative surface charge and control release of NPs and ions. At the time of this review, around 250 articles have been published focusing on the incorporation of Ag-, Cu-, and ZnO-based NPs into MMT support and thus furthering their introduction into polymer matrix composites dominantly used for antimicrobial application. Therefore, it is highly relevant to report a comprehensive review of Ag-, Cu-, and ZnO-modified MMT. This review provides a comprehensive overview of MMT-based nanoantimicrobials, particularly dealing with preparation methods, materials characterization, and mechanisms of action, antimicrobial activity on different bacterial strains, real life applications, and environmental and toxicity issues.

5.
Antibiotics (Basel) ; 12(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830105

RESUMO

Unlike other antimicrobial agents, Ag-based composites are stable and currently widely used as broad spectral additives, fighting microbial biofilms and other biological threats. The goal of the present study is to develop a green, multifunctional, and robust antibiofilm water-insoluble coating, inhibiting histamine-producing Lentilactobacillus parabuchneri biofilms. Herein, laser-ablated Ag NPs (L-Ag NPs) were incorporated into and onto a montmorillonite (MMT) surface layer with a simple wet chemical method, provided that the electrostatic interaction between L-Ag NPs and MMT clay led to the formation of L-Ag/MMT nanoantimicrobials (NAMs). The use of MMT support can facilitate handling Ag NPs in industrial applications. The Ag/MMT composite was characterized with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which confirmed the entrapment of L-Ag NPs into MMT clay. The surface chemical composition was assessed with X-ray photoelectron spectroscopy, proving that Ag NPs were in contact with and deposited onto the surface of MMT. The characteristic L-Ag/MMT band was investigated with UV-vis spectroscopy. Following that, the L-Ag/MMT composite was embedded into a biosafe water-insoluble beeswax agent with a spin coating technique. The antimicrobial ion release kinetic profile of the L-Ag/MMT/beeswax coating through an electrothermal atomic absorption spectroscopy (ETAAS) study supported the controlled release of Ag ions, reaching a plateau at 420 ± 80 nM, which is safe from the point of view of Ag toxicity. Microbial biofilm growth inhibition was assessed with real-time in situ Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) in a flow cell assembly over 32 h. The study was further supported by optical density (OD) measurements and SEM on bacteria incubated in the presence of the L-Ag/MMT/beeswax coating.

6.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806087

RESUMO

Kiteplatin, [PtCl2(cis-1,4-DACH)] (DACH = diaminocyclohexane), contains an isomeric form of the oxaliplatin diamine ligand trans-1R,2R-DACH and has been proposed as a valuable drug candidate against cisplatin- and oxaliplatin-resistant tumors, in particular, colorectal cancer. To further improve the activity of kiteplatin, it has been transformed into a Pt(IV) prodrug by the addition of two benzoato groups in the axial positions. The new compound, cis,trans,cis-[PtCl2(OBz)2(cis-1,4-DACH)] (1; OBz = benzoate), showed cytotoxic activity at nanomolar concentration against a wide panel of human cancer cell lines. Based on these very promising results, the investigation has been extended to the in vivo activity of compound 1 in a Lewis Lung Carcinoma (LLC) model and its suitability for oral administration. Compound 1 resulted to be remarkably stable in acidic conditions (pH 1.5 to mimic the stomach environment) undergoing a drop of the initial concentration to ~60% of the initial one only after 72 h incubation at 37 °C; thus resulting amenable for oral administration. Interestingly, in a murine model (2·106 LLC cells implanted i.m. into the right hind leg of 8-week old male and female C57BL mice), a comparable reduction of tumor mass (~75%) was observed by administering compound 1 by oral gavage and the standard drug cisplatin by intraperitoneal injection, thus indicating that, indeed, there is the possibility of oral administration for this dibenzoato prodrug of kiteplatin. Moreover, since the mechanism of action of Pt(IV) prodrugs involves an initial activation by chemical reduction to cytotoxic Pt(II) species, the reduction of 1 by two bioreductants (ascorbic acid/sodium ascorbate and glutathione) was investigated resulting to be rather slow (not complete after 120 h incubation at 37 °C). Finally, the neurotoxicity of 1 was evaluated using an in vitro assay.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Administração Oral , Animais , Antineoplásicos/uso terapêutico , Cisplatino/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos , Oxaliplatina/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia
7.
ACS Appl Bio Mater ; 5(7): 3230-3240, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35738566

RESUMO

All over the world, one of the major challenges is the green synthesis of potential materials against antimicrobial resistance and viruses. This study demonstrates a simple method like chemistry lab titration to synthesize green, facile, scalable, reproducible, and stable synergistic silver chloride/benzyldimethylhexadecyl-ammonium chloride (AgCl/BAC) colloidal Nanoantimicrobials (NAMs). Nanocolloidal dispersions of AgCl in an aqueous medium are prepared by using silver nitrate (AgNO3) as precursor and BAC as both sources of chloride and stabilizer, holding an asymmetric molecular structure. The synthetic approach is scalable and green. Both the morphology and stability of AgCl/BAC nanocolloids (NCs) were investigated as a function of different molar fractions of the reagents. AgCl/BAC NCs were characterized by transmission electron microscopy (TEM) and X-ray photoelectron and UV-vis spectroscopies. Zeta potential measurements revealed increasing positive potential values at every stage of the synthesis. Size distribution and hydrodynamic diameter of the particles were measured by dynamic light scattering (DLS), which predicted the formation of BAC layered structures associated with the AgCl nanoparticles (NPs). Small-angle X-ray scattering (SAXS) experiments verify the thickness of the BAC bilayer around AgCl. The produced AgCl/BAC NCs probably have synergistic antimicrobial properties from the AgCl core and the biocide BAC shell. AgCl/BAC NCs stability over months was investigated. The experimental evidence supports the morphological stability of the AgCl/BAC NCs, while higher positive zeta potential values anticipate a long-term antimicrobial effect: a higher surface charge causes NPs to be potentially more lethal to bacteria. AgCl/BAC antimicrobial aqueous colloidal suspensions will be used as additives for the industrial production of antimicrobial coatings.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
Nanomaterials (Basel) ; 12(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269355

RESUMO

Herein, we report a combined strategy encompassing electrochemical and X-ray photoelectron spectroscopy (XPS) experiments to investigate self-assembled monolayer (SAM) conformational reorganization onto an electrode surface due to the application of an electrical field. In particular, 3-mercaptopriopionic acid SAM (3MPA SAM) modified gold electrodes are activated with a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHSS) (EDC-NHSS) mixture by shortening the activation time, from 2 h to 15/20 min, labelled as Protocol-A, -B and -C, respectively. This step, later followed by a deactivation process with ethanolamine (EA), plays a key role in the reaction yields (formation of N-(2-hydroxyethyl)-3-mercaptopropanamide, NMPA) but also in the conformational rearrangement observed during the application of the electrical field. This study aims at explaining the high performance (i.e., single-molecule detection at a large electrode interface) of bioelectronic devices, where the 3MPA-based SAM structure is pivotal in achieving extremely high sensing performance levels due to its interchain interaction. Cyclic voltammetry (CV) experiments performed in K4Fe(CN)6:K3Fe(CN)6 for 3MPA SAMs that are activated/deactivated show similar trends of anodic peak current (IA) over time, mainly related to the presence of interchain hydrogen bonds, driving the conformational rearrangements (tightening of SAMs structure) while applying an electrical field. In addition, XPS analysis allows correlation of the deactivation yield with electrochemical data (conformational rearrangements), identifying the best protocol in terms of high reaction yield, mainly related to the shorter reaction time, and not triggering any side reactions. Finally, Protocol-C's SAM surface coverage, determined by CV in H2SO4 and differential pulse voltammetry (DPV) in NaOH, was 1.29 * 1013 molecules cm-2, being similar to the bioreceptor surface coverage in single-molecule detection at a large electrode interface.

9.
Dalton Trans ; 50(43): 15655-15668, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34673864

RESUMO

Six enantiomerically pure, oxaliplatin-like, platinum compounds (two platinum(II) and four platinum(IV)), all containing unsaturated cyclic diamine trans-1,2-diamino-4-cyclohexene (DACHEX) as a substitute for the trans-1,2-diaminocyclohexane used in oxaliplatin, were investigated. The complexes were characterized by elemental analyses, ESI-MS, and 1H-NMR spectroscopy. For the four Pt(IV) complexes the electrochemical redox behaviour, investigated by cyclic voltammetry, showed that all complexes possess reduction potentials suitable for activation in vivo. The antiproliferative activity was assessed in vitro on human cancer cell lines, also selected for resistance to platinum-based drugs or belonging to the MultiDrug-Resistant (MDR) phenotype. All complexes exhibited antiproliferative activity superior to that of cisplatin and almost equivalent to or better than that of oxaliplatin; moreover, most complexes were also capable of overcoming both the cisplatin- and the oxaliplatin-resistance. By comparing the effectiveness of the enantiomerically pure compounds with the racemic one, the R,R enantiomer emerged as the most effective in the case of Pt(II) complexes whereas the S,S enantiomer was the most effective in the case of the Pt(IV) derivatives. From the results obtained also against 3D spheroid tumor models, cis,trans,cis-[Pt(OXA)(OBz)2(1S,2S-DACHEX)] (OBz = benzoate) emerged as the most promising candidate for further preclinical investigation.


Assuntos
Oxaliplatina
10.
ACS Omega ; 6(38): 24562-24574, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604638

RESUMO

MnO x -TiO2 catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH3-SCR (selective catalytic reduction) of NO x have been synthesized by the reverse micelle-assisted sol-gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount. For comparison, a sample at nominal 10 wt % Mn was obtained by impregnation of the (undoped) TiO2 sample. The catalysts were characterized by using an integrated multitechnique approach, encompassing X-ray diffraction followed by Rietveld refinement, micro-Raman spectroscopy, N2 isotherm measurement at -196 °C, energy-dispersive X-ray analysis, diffuse reflectance UV-vis spectroscopy, temperature-programmed reduction technique, and X-ray photoelectron spectroscopy. The obtained results prove that the reverse micelle sol-gel approach allowed for enhancing the catalytic activity, in that the catalysts were active in a broad temperature range at a substantially low Mn loading, as compared to the impregnated catalyst. Particularly, the 5 wt % Mn catalyst showed the best NH3-SCR activity in terms of both NO x conversion (ca. 90%) and the amount of produced N2O (ca. 50 ppm) in the 200-250 °C temperature range.

11.
Nanomaterials (Basel) ; 11(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199123

RESUMO

The emerging problem of the antibiotic resistance development and the consequences that the health, food and other sectors face stimulate researchers to find safe and effective alternative methods to fight antimicrobial resistance (AMR) and biofilm formation. One of the most promising and efficient groups of materials known for robust antimicrobial performance is noble metal nanoparticles. Notably, silver nanoparticles (AgNPs) have been already widely investigated and applied as antimicrobial agents. However, it has been proposed to create synergistic composites, because pathogens can find their way to develop resistance against metal nanophases; therefore, it could be important to strengthen and secure their antipathogen potency. These complex materials are comprised of individual components with intrinsic antimicrobial action against a wide range of pathogens. One part consists of inorganic AgNPs, and the other, of active organic molecules with pronounced germicidal effects: both phases complement each other, and the effect might just be the sum of the individual effects, or it can be reinforced by the simultaneous application. Many organic molecules have been proposed as potential candidates and successfully united with inorganic counterparts: polysaccharides, with chitosan being the most used component; phenols and organic acids; and peptides and other agents of animal and synthetic origin. In this review, we overview the available literature and critically discuss the findings, including the mechanisms of action, efficacy and application of the silver-based synergistic antimicrobial composites. Hence, we provide a structured summary of the current state of the research direction and give an opinion on perspectives on the development of hybrid Ag-based nanoantimicrobials (NAMs).

12.
Materials (Basel) ; 14(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201634

RESUMO

BACKGROUND: The blood-brain barrier (BBB) bypass of dopamine (DA) is still a challenge for supplying it to the neurons of Substantia Nigra mainly affected by Parkinson disease. DA prodrugs have been studied to cross the BBB, overcoming the limitations of DA hydrophilicity. Therefore, the aim of this work is the synthesis and preliminary characterization of an oxidized alginate-dopamine (AlgOX-DA) conjugate conceived for DA nose-to-brain delivery. METHODS: A Schiff base was designed to connect oxidized polymeric backbone to DA and both AlgOX and AlgOX-DA were characterized in terms of Raman, XPS, FT-IR, and 1H- NMR spectroscopies, as well as in vitro mucoadhesive and release tests. RESULTS: Data demonstrated that AlgOX-DA was the most mucoadhesive material among the tested ones and it released the neurotransmitter in simulated nasal fluid and in low amounts in phosphate buffer saline. Results also demonstrated the capability of scanning near-field optical microscopy to study the structural and fluorescence properties of AlgOX, fluorescently labeled with fluorescein isothiocyanate microstructures. Interestingly, in SH-SY5Y neuroblastoma cell line up to 100 µg/mL, no toxic effect was derived from AlgOX and AlgOX-DA in 24 h. CONCLUSIONS: Overall, the in vitro performances of AlgOX and AlgOX-DA conjugates seem to encourage further ex vivo and in vivo studies in view of nose-to-brain administration.

13.
ACS Omega ; 6(8): 5379-5388, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681577

RESUMO

Six Mo/TiO2 samples (with 0, 1.0, 2.5, 5.0, 7.5, and 10 wt % Mo nominal contents) were obtained by reverse micelle sol-gel synthesis, followed by calcination at 500 °C. The samples were characterized by means of powder X-ray Diffraction (PXRD), quantitative phase analysis as obtained by Rietveld refinement, field-emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray analysis, N2 adsorption/desorption at -196 °C, X-ray photoelectron spectroscopy, and diffuse reflectance (DR) UV-vis spectroscopy. As a whole, the adopted characterization techniques showed the inclusion of a sizeable Mo amount, without the segregation of any MoO x phase. Specifically, PXRD showed the occurrence of anatase and brookite with all the studied samples; notwithstanding the mild calcination temperature, the formation of rutile occurred at Mo wt % ≥2.5 likely due to the presence of brookite favoring, in turn, anatase to rutile transition. DR UV-vis and XP spectroscopies allowed determining the samples' band gap energy (E g) and valence band energy, respectively, from which the conduction band energy was calculated; and the observed E g value increase at 10 wt % Mo was ascribed to the Moss-Burstein effect.

14.
Antibiotics (Basel) ; 10(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513680

RESUMO

The urgency for the availability of new antibacterial/disinfectant agents has become a worldwide priority. At the same time, along with the extensive use of other metal nanoparticles (NPs), the investigation of magnetic NPs (MNPs) in antibacterial studies has turned out to be an increasingly attractive research field. In this context, we present the preparation and characterization of superparamagnetic iron oxide NPs, electrodecorated with antimicrobial copper NPs, able to modulate the release of bioactive species not only by the NP's stabilizer, but also through the application of a suitable magnetic field. Antimicrobial synergistic CuNPs stabilized by benzalkonium chloride have been used in the current study. We demonstrate the successful preparation of Cu@Fe3O4 MNPs composites through morphological and spectroscopic results. Additionally, an extensive magnetic characterization is reported, along with hyperthermia-induced copper ionic release. On the basis of our results, we propose a new generation of antimicrobial magnetic nanomaterials, whose bioactivity can be also tuned by the application of a magnetic field.

15.
J Inorg Biochem ; 215: 111334, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33341588

RESUMO

In the present study we have studied the incorporation and release of selenite ions (SeO32-) in hydroxyapatite nanoparticles for the treatment of bone tumors. Two types of selenium-doped hydroxyapatite (HASe) nanoparticles (NPs) with a nominal Se/(P + Se) molar ratio ranging from 0.01 up to 0.40 have been synthesized by a new and mild wet method. The two series of samples were thoroughly characterized and resulted to be slightly different in chemical composition, but they had similar properties in terms of morphology and degree of crystallinity. Selenium release from HASe was investigated under neutral and acidic conditions to simulate both healthy tissues and the low-pH environment surrounding a tumor mass, respectively. The comparison of the release profiles at two pH values clearly showed the possibility of modulating the Se release by simply changing the amount of Se in the HASe particles. The correlation between the physicochemical properties of HASe and their dissolution as a function of pH has been also investigated to facilitate future application of the NPs as chemotherapeutic adjuvant agents. Finally, the cytotoxic activity of HASe was evaluated using prostate (PC3) and breast (MDA-MB-231) cancer cells as well as healthy human bone marrow stem cells (hBMSc). HASe NPs exerted a good cytocompatibility at low concentration of Se but, with high Se doping concentration, they displayed strong cytotoxicity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Durapatita/química , Nanopartículas/química , Selênio/química , Antineoplásicos/química , Neoplasias Ósseas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Durapatita/farmacologia , Humanos , Microscopia Eletrônica de Transmissão/métodos , Células PC-3 , Selênio/farmacologia , Óxidos de Selênio/química , Difração de Raios X/métodos
16.
Nanomaterials (Basel) ; 10(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781618

RESUMO

Copper nanoparticles (CuNPs) stabilized by quaternary ammonium salts are well known as antimicrobial agents. The aim of this work was to study the feasibility of the inclusion of CuNPs in nanovesicular systems. Liposomes are nanovesicles (NVs) made with phospholipids and are traditionally used as delivery vehicles because phospholipids favor cellular uptake. Their capacity for hydrophilic/hydrophobic balance and carrier capacity could be advantageous to prepare novel hybrid nanostructures based on metal NPs (Me-NPs). In this work, NVs were loaded with CuNPs, which have been reported to have a biofilm inhibition effect. These hybrid materials could improve the effect of conventional antibacterial agents. CuNPs were electro-synthesized by the sacrificial anode electrolysis technique in organic media and characterized in terms of morphology through transmission electron microscopy (TEM). The NVs were prepared by the thin film hydration method in aqueous media, using phosphatidylcholine (PC) and cholesterol as a membrane stabilizer. The nanohybrid systems were purified to remove non-encapsulated NPs. The size distribution, morphology and stability of the NV systems were studied. Different quaternary ammonium salts in vesicular systems made of PC were tested as stabilizing surfactants for the synthesis and inclusion of CuNPs. The entrapment of charged metal NPs was demonstrated. NPs attached preferably to the membrane, probably due to the attraction of their hydrophobic shell to the phospholipid bilayers. The high affinity between benzyl-dimethyl-hexadecyl-ammonium chloride (BDHAC) and PC allowed us to obtain stable hybrid NVs c.a. 700 nm in diameter. The stability of liposomes increased with NP loading, suggesting a charge-stabilization effect in a novel antibiofilm nanohybrid material.

17.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230896

RESUMO

Six platinum(IV) compounds derived from an oxaliplatin analogue containing the unsaturated cyclic diamine trans-1,2-diamino-4-cyclohexene (DACHEX), in place of the 1,2-diaminocyclohexane, and a range of axial ligands, were synthesized and characterized. The derivatives with at least one axial chlorido ligand demonstrated solvent-assisted photoreduction. The electrochemical redox behavior was investigated by cyclic voltammetry; all compounds showed reduction potentials suitable for activation in vivo. X-ray photoelectron spectroscopy (XPS) data indicated an X-ray-induced surface reduction of the Pt(IV) substrates, which correlates with the reduction potentials measured by cyclic voltammetry. The cytotoxic activity was assessed in vitro on a panel of human cancer cell lines, also including oxaliplatin-resistant cancer cells, and compared with that of the reference compounds cisplatin and oxaliplatin; all IC50 values were remarkably lower than those elicited by cisplatin and somewhat lower than those of oxaliplatin. Compared to the other Pt(IV) compounds of the series, the bis-benzoate derivative was by far (5-8 times) the most cytotoxic showing that low reduction potential and high lipophilicity are essential for good cytotoxicity. Interestingly, all the complexes proved to be more active than cisplatin and oxaliplatin even in three-dimensional spheroids of A431 human cervical cancer cells.


Assuntos
Antineoplásicos/química , Cicloexenos/química , Compostos Organoplatínicos/química , Oxaliplatina/análogos & derivados , Pró-Fármacos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/farmacologia , Cicloexenos/síntese química , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/farmacologia , Oxaliplatina/química , Oxaliplatina/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia
18.
Nanomaterials (Basel) ; 10(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326343

RESUMO

Since 2004, we have been developing nanomaterials with antimicrobial properties, the so-called nanoantimicrobials. When the coronavirus disease 2019 (COVID-19) emerged, we started investigating new and challenging routes to nanoantivirals. The two fields have some important points of contact. We would like to share with the readership our vision of the role a (nano)materials scientist can play in the fight against the COVID-19 pandemic. As researchers specifically working on surfaces and nanomaterials, in this letter we underline the importance of nanomaterial-based technological solutions in several aspects of the fight against the virus. While great resources are understandably being dedicated to treatment and diagnosis, more efforts could be dedicated to limit the virus spread. Increasing the efficacy of personal protection equipment, developing synergistic antiviral coatings, are only two of the cases discussed. This is not the first nor the last pandemic: our nanomaterials community may offer several technological solutions to challenge the ongoing and future global health emergencies. Readers' feedback and suggestions are warmly encouraged.

19.
Molecules ; 25(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877834

RESUMO

The rapid spreading of resistance among common bacterial pathogens towards the misused antibiotics/disinfectant agents has drawn much attention worldwide to bacterial infections. In light of this, the present work aimed at the realization of core-shell nanoparticles possessing remarkable antimicrobial properties thanks to the synergistic action of the metal core and the disinfectant shell. Copper nanoparticles stabilized by benzalkonium chloride were prepared, characterized, and implemented in poly-vinyl-methyl ketone to obtain nanoantimicrobial composite coatings. Bioactivity tests are reported, proving the excellent disinfectant properties of the proposed nanomaterials, as compared to one of the well-known and strongest silver-based nanoantimicrobials. Applications are also briefly described.


Assuntos
Antibacterianos/síntese química , Compostos de Benzalcônio/química , Cobre/química , Desinfetantes/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Compostos de Benzalcônio/farmacologia , Cobre/farmacologia , Desinfetantes/química , Desinfetantes/farmacologia , Escherichia coli/efeitos dos fármacos , Cetonas/química , Nanopartículas Metálicas , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
20.
Materials (Basel) ; 12(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901826

RESUMO

TiO2 nanoparticles containing 0.0, 1.0, 5.0, and 10.0 wt.% Mo were prepared by a reverse micelle template assisted sol⁻gel method allowing the dispersion of Mo atoms in the TiO2 matrix. Their textural and surface properties were characterized by means of X-ray powder diffraction, micro-Raman spectroscopy, N2 adsorption/desorption isotherms at -196 °C, energy dispersive X-ray analysis coupled to field emission scanning electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV⁻Vis spectroscopy, and ζ-potential measurement. The photocatalytic degradation of Rhodamine B (under visible light and low irradiance) in water was used as a test reaction as well. The ensemble of the obtained experimental results was analyzed in order to discover the actual state of Mo in the final materials, showing the occurrence of both bulk doping and Mo surface species, with progressive segregation of MoOx species occurring only at a higher Mo content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...