Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 24(4): 457-66, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11115127

RESUMO

MADS-box genes encode transcriptional regulators involved in diverse aspects of plant development. Here we describe the cloning and mRNA spatio-temporal expression patterns of five new MADS-box genes from Arabidopsis: AGL16, AGL18, AGL19, AGL27 and AGL31. These genes will probably become important molecular tools for both evolutionary and functional analyses of vegetative structures. We mapped our data and previous expression patterns onto a new MADS-box phylogeny. These analyses suggest that the evolution of the MADS-box family has involved a rapid and simultaneous functional diversification in vegetative as well as reproductive structures. The hypothetical ancestral genes had broader expression patterns than more derived ones, which have been co-opted for putative specialized functions as suggested by their expression patterns. AGL27 and AGL31, which are closely related to the recently described flowering-time gene FLC (previously AGL25), are expressed in most plant tissues. AGL19 is specifically expressed in the outer layers of the root meristem (lateral root cap and epidermis) and in the central cylinder cells of mature roots. AGL18, which is most similar in sequence to the embryo-expressed AGL15 gene, is expressed in the endosperm and in developing male and female gametophytes, suggesting a role for AGL18 that is distinct from previously characterized MADS-box genes. Finally, AGL16 RNA accumulates in leaf guard cells and trichomes. Our new phylogeny reveals seven new monophyletic clades of MADS-box sequences not specific to flowers, suggesting that complex regulatory networks involving several MADS-box genes, similar to those that control flower development, underlie development of vegetative structures.


Assuntos
Proteínas de Ligação a DNA/genética , Plantas/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas , Raízes de Plantas/citologia , Raízes de Plantas/genética , Pólen/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/genética , Análise de Sequência de DNA , Distribuição Tecidual
2.
Science ; 288(5471): 1613-6, 2000 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-10834834

RESUMO

In plants, flowering is triggered by endogenous and environmental signals. CONSTANS (CO) promotes flowering of Arabidopsis in response to day length. Four early target genes of CO were identified using a steroid-inducible version of the protein. Two of these genes, SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) and FLOWERING LOCUS T (FT), are required for CO to promote flowering; the others are involved in proline or ethylene biosynthesis. The SOC1 and FT genes are also regulated by a second flowering-time pathway that acts independently of CO. Thus, early target genes of CO define common components of distinct flowering-time pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Cicloeximida/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dexametasona/farmacologia , Etilenos/biossíntese , Genes de Plantas , Proteínas de Domínio MADS , Meristema/genética , Meristema/fisiologia , Fenótipo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Prolina/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Proteínas Recombinantes de Fusão , Supressão Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nature ; 405(6783): 200-3, 2000 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-10821278

RESUMO

Abnormal flowers have been recognized for thousands of years, but only in the past decade have the mysteries of flower development begun to unfold. Among these mysteries is the differentiation of four distinct organ types (sepals, petals, stamens and carpels), each of which may be a modified leaf. A landmark accomplishment in plant developmental biology is the ABC model of flower organ identity. This simple model provides a conceptual framework for explaining how the individual and combined activities of the ABC genes produce the four organ types of the typical eudicot flower. Here we show that the activities of the B and C organ-identity genes require the activities of three closely related and functionally redundant MADS-box genes, SEPALLATA1/2/3 (SEP1/2/3). Triple mutant Arabidopsis plants lacking the activity of all three SEP genes produce flowers in which all organs develop as sepals. Thus SEP1/2/3 are a class of organ-identity genes that is required for development of petals, stamens and carpels.


Assuntos
Arabidopsis/fisiologia , Genes de Plantas , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Domínio MADS , Mutação , Proteínas de Plantas , Estruturas Vegetais/fisiologia , Reação em Cadeia da Polimerase , Fatores de Transcrição/genética
4.
Proc Natl Acad Sci U S A ; 97(10): 5328-33, 2000 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-10805792

RESUMO

Changes in genes encoding transcriptional regulators can alter development and are important components of the molecular mechanisms of morphological evolution. MADS-box genes encode transcriptional regulators of diverse and important biological functions. In plants, MADS-box genes regulate flower, fruit, leaf, and root development. Recent sequencing efforts in Arabidopsis have allowed a nearly complete sampling of the MADS-box gene family from a single plant, something that was lacking in previous phylogenetic studies. To test the long-suspected parallel between the evolution of the MADS-box gene family and the evolution of plant form, a polarized gene phylogeny is necessary. Here we suggest that a gene duplication ancestral to the divergence of plants and animals gave rise to two main lineages of MADS-box genes: TypeI and TypeII. We locate the root of the eukaryotic MADS-box gene family between these two lineages. A novel monophyletic group of plant MADS domains (AGL34 like) seems to be more closely related to previously identified animal SRF-like MADS domains to form TypeI lineage. Most other plant sequences form a clear monophyletic group with animal MEF2-like domains to form TypeII lineage. Only plant TypeII members have a K domain that is downstream of the MADS domain in most plant members previously identified. This suggests that the K domain evolved after the duplication that gave rise to the two lineages. Finally, a group of intermediate plant sequences could be the result of recombination events. These analyses may guide the search for MADS-box sequences in basal eukaryotes and the phylogenetic placement of new genes from other plant species.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Evolução Molecular , Duplicação Gênica , Variação Genética , Família Multigênica , Filogenia , Plantas/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Fungos/genética , Proteínas de Domínio MADS , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Nature ; 404(6779): 766-70, 2000 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-10783890

RESUMO

The fruit, which mediates the maturation and dispersal of seeds, is a complex structure unique to flowering plants. Seed dispersal in plants such as Arabidopsis occurs by a process called fruit dehiscence, or pod shatter. Few studies have focused on identifying genes that regulate this process, in spite of the agronomic value of controlling seed dispersal in crop plants such as canola. Here we show that the closely related SHATTERPROOF (SHP1) and SHATTERPROOF2 (SHP2) MADS-box genes are required for fruit dehiscence in Arabidopsis. Moreover, SHP1 and SHP2 are functionally redundant, as neither single mutant displays a novel phenotype. Our studies of shp1 shp2 fruit, and of plants constitutively expressing SHP1 and SHP2, show that these two genes control dehiscence zone differentiation and promote the lignification of adjacent cells. Our results indicate that further analysis of the molecular events underlying fruit dehiscence may allow genetic manipulation of pod shatter in crop plants.


Assuntos
Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Ligação a DNA/fisiologia , Lignina/metabolismo , Proteínas de Domínio MADS , Fenótipo , Proteínas de Plantas , Reação em Cadeia da Polimerase , Sementes/genética , Sementes/ultraestrutura , Fatores de Transcrição/fisiologia
6.
Plant Cell ; 11(6): 1007-18, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10368173

RESUMO

Upon floral induction, the primary shoot meristem of an Arabidopsis plant begins to produce flower meristems rather than leaf primordia on its flanks. Assignment of floral fate to lateral meristems is primarily due to the cooperative activity of the flower meristem identity genes LEAFY (LFY), APETALA1 (AP1), and CAULIFLOWER. We present evidence here that AP1 expression in lateral meristems is activated by at least two independent pathways, one of which is regulated by LFY. In lfy mutants, the onset of AP1 expression is delayed, indicating that LFY is formally a positive regulator of AP1. We have found that AP1, in turn, can positively regulate LFY, because LFY is expressed prematurely in the converted floral meristems of plants constitutively expressing AP1. Shoot meristems maintain an identity distinct from that of flower meristems, in part through the action of genes such as TERMINAL FLOWER1 (TFL1), which bars AP1 and LFY expression from the influorescence shoot meristem. We show here that this negative regulation can be mutual because TFL1 expression is downregulated in plants constitutively expressing AP1. Therefore, the normally sharp phase transition between the production of leaves with associated shoots and formation of the flowers, which occurs upon floral induction, is promoted by positive feedback interactions between LFY and AP1, together with negative interactions of these two genes with TFL1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Meristema , Fator de Transcrição AP-1/genética , Fatores de Transcrição/genética
7.
Biochim Biophys Acta ; 1407(1): 84-91, 1998 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9639681

RESUMO

Usher syndrome type 1C (USH1C) occurs in a small population of Acadian descendants from southwestern Louisiana. Linkage and linkage disequilibrium analyses localize USH1C to chromosome 11p between markers D11S1397 and D11S1888, an interval of less than 680 kb. Here, we refine the USH1C linkage to a region less than 400 kb, between genetic markers D11S1397 and D11S1890. Using 17 genetic markers from this interval, we have isolated a contiguous set of 60 bacterial artificial chromosomes (BACs) that span the USH1C critical region. Exon trapping of BAC clones from this region resulted in the recovery of an exon of the nuclear EF-hand acidic (NEFA) gene. However, DNA sequence analysis of the NEFA cDNA from lymphocytes of affected individuals provided no evidence of mutation, making structural mutations in the NEFA protein unlikely as the cellular cause of Acadian Usher syndrome.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 11 , Proteínas de Ligação a DNA/genética , Perda Auditiva Neurossensorial/genética , Retinose Pigmentar/genética , Bacteriófago P1/genética , Proteínas de Ligação ao Cálcio , Canadá/etnologia , Cromossomos Artificiais de Levedura , Clonagem Molecular , França/etnologia , Perda Auditiva Neurossensorial/classificação , Perda Auditiva Neurossensorial/epidemiologia , Humanos , Louisiana/epidemiologia , Repetições de Microssatélites , Proteínas do Tecido Nervoso , Nucleobindinas , Retinose Pigmentar/classificação , Retinose Pigmentar/epidemiologia , Análise de Sequência de DNA , Síndrome
8.
Development ; 124(19): 3845-53, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9367440

RESUMO

The expression of the floral regulators LEAFY, APETALA1 and AGAMOUS-LIKE8 was examined during light treatments that induced flowering in Arabidopsis, and was compared to time points at which floral determination occurred. Extension of an 8-hour day by either continuous red- or far-red-enriched light induced LEAFY and AGAMOUS-LIKE8 expression within 4 hours. The 4 hours of additional light was sufficient for floral determination only in the far-red-enriched conditions, while 12-16 hours of additional light was required for floral determination in the red-enriched conditions. These results indicate that the induction of floral regulatory genes and induction of flower formation can be uncoupled under certain circumstances. Expression of LEAFY and AGAMOUS-LIKE8 in the shoot apex at the time of floral determination is also consistent with genetic data indicating that these genes are involved in the first steps of the transition from vegetative to reproductive development. In contrast to LEAFY and AGAMOUS-LIKE8, APETALA1 expression was first observed 16 hours after the start of photoinduction. Since this time point was always after floral determination, APETALA1 is an indicator of floral determination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reguladores , Proteínas de Domínio MADS , Proteínas de Plantas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Luz , Microscopia Eletrônica de Varredura , Morfogênese , Caules de Planta/fisiologia , Caules de Planta/ultraestrutura , Fatores de Tempo , Fatores de Transcrição/biossíntese
9.
Plant Cell ; 7(8): 1259-69, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7549482

RESUMO

Members of the MADS box gene family play important roles in flower development from the early step of determining the identity of floral meristems to specifying the identity of floral organ primordia later in flower development. We describe here the isolation and characterization of six additional members of this family, increasing the number of reported Arabidopsis MADS box genes to 17. All 11 members reported prior to this study are expressed in flowers, and the majority of them are floral specific. RNA expression analyses of the six genes reported here indicate that two genes, AGL11 and AGL13 (AGL for AGAMOUS-like), are preferentially expressed in ovules, but each has a distinct expression pattern. AGL15 is preferentially expressed in embryos, with its onset at or before the octant stage early in embryo development. AGL12, AGL14, and AGL17 are all preferentially expressed in root tissues and therefore represent the only characterized MADS box genes expressed in roots. Phylogenetic analyses showed that the two genes expressed in ovules are closely related to previously isolated MADS box genes, whereas the four genes showing nonfloral expression are more distantly related. Data from this and previous studies indicate that in addition to their proven role in flower development, MADS box genes are likely to play roles in many other aspects of plant development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Genes de Plantas/genética , Família Multigênica/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis , Sequência de Bases , Northern Blotting , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/genética , Biblioteca Gênica , Processamento de Imagem Assistida por Computador , Hibridização In Situ , Proteínas de Domínio MADS , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Mensageiro/análise , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
10.
J Biol Chem ; 270(10): 5243-50, 1995 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-7890634

RESUMO

The two-component system sensor/response regulator pair, FixL/FixJ, controls the expression of Rhizobium meliloti nitrogen fixation (nif and fix) genes in response to changes in oxygen concentration. A truncated version of FixL, FixL*, is an oxygen-binding hemoprotein kinase that phosphorylates and dephosphorylates the nif and fix gene transcriptional activator, FixJ. Phosphorylation of FixJ is required for optimal transcriptional activation, and anaerobic conditions in vitro result in a substantial increase in the level of FixJ-phosphate. In this study, site-directed mutagenesis was carried out at histidine residues in FixL*. Mutant FixL* derivatives were purified and analyzed in vitro for their heme/oxygen binding properties and phosphorylation/dephosphorylation activities. Mutation of histidine 285, the putative autophosphorylation site, to glutamine results in the loss of FixL* phosphorylation activities. However, this mutant protein retains a substantial level of FixJ-phosphate dephosphorylation activity. Mutation of histidine 194 to asparagine results in the loss of heme binding and in the failure of FixL* to regulate its phosphorylation/dephosphorylation activities in response to changes in oxygen concentration. The FixL*H194N mutant protein also exhibits an increased FixJ phosphorylation activity under aerobic conditions. This study provides further evidence for the importance of the heme binding domain of FixL* in regulating FixJ phosphorylation and dephosphorylation activities in response to oxygen.


Assuntos
Proteínas de Bactérias/metabolismo , Hemeproteínas/metabolismo , Histidina , Oxigênio/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Sequência de Bases , Sítios de Ligação , Heme/metabolismo , Hemeproteínas/biossíntese , Hemeproteínas/química , Histidina Quinase , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos , Fosforilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Sinorhizobium meliloti/genética , Espectrofotometria
11.
Res Microbiol ; 145(5-6): 454-9, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7855432

RESUMO

The sensor kinase FixL and the response regulator FixJ induce the expression of the nitrogen fixation genes of Rhizobium meliloti in response to microaerobiosis, which is a characteristic feature of the plant root nodule interior where the bacteria fix nitrogen. The kinase activity of a purified, soluble derivative of the membrane-bound hemoprotein FixL, designated FixL*, is stimulated under low oxygen conditions, thus increasing FixJ-phosphate levels. FixJ-phosphate is a potent transcriptional activator of the nifA and fixK genes, the products of which, in turn, induce the expression of most if not all of the remaining nitrogen fixation genes. FixL* and FixL*-phosphate also dephosphorylate FixJ-phosphate, and this activity is depressed by low oxygen concentrations. In the current model, gene expression is reciprocally coordinated by the kinase and phosphatase activities of FixL according to changes in oxygen tension.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Hemeproteínas/genética , Consumo de Oxigênio/genética , Sinorhizobium meliloti/genética , Histidina Quinase , Técnicas In Vitro , Fixação de Nitrogênio/genética , Regiões Promotoras Genéticas/genética , Sinorhizobium meliloti/metabolismo
12.
Gene ; 134(2): 145-52, 1993 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-8262372

RESUMO

FixL and FixJ belong to a two-component regulatory system in Rhizobium meliloti that induces the expression of numerous nitrogen-fixation genes during symbiosis with alfalfa. FixJ is a positive activator required for transcription of the regulatory genes nifA and fixK, while FixL is an oxygen-binding hemoprotein capable of regulating the phosphorylation status of both itself and FixJ, in response to oxygen availability. In this study, we isolated four FixJ mutants that display increased activity at the nifA promoter (PnifA) in Escherichia coli. All four mutants possess amino acid changes in a domain of FixJ that is conserved in other response regulator proteins, and all exhibit increased activity at PnifA in R. meliloti that is dependent on the presence of FixL. One of the mutant proteins, while less efficient at accepting phosphate from a truncated derivative of FixL (FixL*), nevertheless has a phosphorylated form that is more stable than the phosphorylated form of wild-type (wt) FixJ and is more resistant to the phosphatase activity of FixL*. The wt FixJ-phosphate was found to have a half-life of approximately 4 h, which makes it an unusually long-lived response regulator protein. The exceptional stability of wt FixJ-phosphate and the altered phosphorylation properties observed for the mutant are discussed in relation to signal transduction in the FixLJ system.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Mutação , Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Fosforilação , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Proc Natl Acad Sci U S A ; 90(8): 3506-10, 1993 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-8475099

RESUMO

In Rhizobium meliloti, transcription of the key nitrogen-fixation regulatory genes nifA and fixK is induced in response to microaerobiosis through the action of the FixL and FixJ proteins. These two proteins are sensor and regulator homologues, respectively, of a large family of bacterial two-component systems involved in sensing and responding to environmental changes. A soluble, truncated form of the membrane protein FixL, FixL*, has been shown to be a hemoprotein that phosphorylates and dephosphorylates FixJ in response to oxygen tension. Here we use an in vitro transcription system to prove that FixJ is a transcriptional activator of both nifA and fixK and that phosphorylation of FixJ markedly increases its activity. Phosphorylation was achieved either by preincubating FixJ with FixL* and ATP or by exposing FixJ to the inorganic phospho donor ammonium hydrogen phosphoramidate. Both FixJ and FixJ-phosphate formed heparin-resistant complexes under the assay conditions used. Lastly, we were able to show that anaerobiosis, in the presence of FixL* and ATP, greatly stimulates FixJ activity at the nifA promoter with either Escherichia coli or R. meliloti RNA polymerase. This use of atmospheric oxygen to control nifA transcription in vitro represents a reconstitution of a bacterial two-component signal transduction system in its entirety, from effector to ultimate target, by the use of purified components.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genes Reguladores , Fixação de Nitrogênio/genética , Oxigênio/metabolismo , Sinorhizobium meliloti/genética , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Aerobiose , Amidas/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Escherichia coli/enzimologia , Hemeproteínas/metabolismo , Histidina Quinase , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos , Ácidos Fosfóricos/farmacologia , Fosforilação , Plasmídeos , Mapeamento por Restrição , Transdução de Sinais , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/metabolismo , Moldes Genéticos , Transcrição Gênica/efeitos dos fármacos
14.
J Biol Chem ; 268(6): 4370-5, 1993 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-8382700

RESUMO

The FixL and FixJ proteins of Rhizobium meliloti control the expression of other nif and fix genes in response to oxygen levels. FixL is a hemoprotein kinase that senses oxygen availability and responds to the absence of oxygen by activation of its autophosphorylating activity followed by transfer of the phosphate to FixJ. FixJ in turn activates the nifA and fixK promoters. In vitro studies reported here with a soluble truncated version of FixL (FixL*) indicate that, while low oxygen tension specifically increases the autophosphorylating activity of FixL*, the ability of phospho-FixL* to act as a phosphate donor to FixJ is not affected by the presence or absence of oxygen. FixL* is also shown to possess a phosphatase activity that is repressed under anaerobic conditions only when the protein is in the phosphorylated form. A fixL mutant that induces a higher level of nifA promoter activity in the presence of fixJ in vivo displayed both an increased autophosphorylating activity and a decreased phosphatase activity in vitro. These data provide evidence for a role for both autophosphorylation and phosphatase activities of FixL in the mechanism by which oxygen tension within the alfalfa nodule induces expression of bacterial nitrogen fixation genes during symbiosis.


Assuntos
Proteínas de Bactérias/metabolismo , Hemeproteínas/metabolismo , Oxigênio/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Sinorhizobium meliloti/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Hemeproteínas/genética , Histidina Quinase , Cinética , Mutação , Fosforilação , Temperatura
15.
J Bacteriol ; 175(4): 1103-9, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8432704

RESUMO

Regulation of nitrogen fixation genes in Rhizobium meliloti is mediated by two proteins, FixL and FixJ, in response to oxygen availability. FixL is an oxygen-binding hemoprotein with kinase and phosphatase activities that is thought to sense oxygen levels directly and to transmit this signal to FixJ via phosphorylation-dephosphorylation reactions. FixJ controls the expression of other regulatory genes, including nifA, that regulate the transcription of genes required for symbiotic nitrogen fixation. We have been studying the structural and functional features of FixL that are required for oxygen sensing. We constructed mutant derivatives and confirmed that FixL consists of 505 amino acids instead of 464, as originally reported. Hydropathy plots of the full-length protein, together with TnphoA insertional analysis, lead us to propose that FixL is likely to be a polytopic integral membrane protein containing four membrane-spanning segments. We have also constructed an N-terminal deletion of the FixL protein whose in vivo activity indicates that the hydrophobic membrane-spanning regions are not absolutely required for oxygen sensing in vivo. We also report that FixL shares homology in its N terminus with other sensor proteins, including KinA from Bacillus subtilis and NtrB from Bradyrhizobium parasponia. The region of homology comprises a 70-amino-acid residue stretch that is also conserved in two oxygenases, P-450 and isopenicillin synthase.


Assuntos
Proteínas de Bactérias/genética , Hemeproteínas/genética , Proteínas de Membrana/fisiologia , Oxigênio/metabolismo , Sinorhizobium meliloti/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Hemeproteínas/química , Hemeproteínas/metabolismo , Histidina Quinase , Dados de Sequência Molecular , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Alinhamento de Sequência , Deleção de Sequência , Solubilidade , Relação Estrutura-Atividade
16.
Mol Microbiol ; 6(15): 2041-9, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1406247

RESUMO

Rhizobium meliloti FixL and FixJ are members of a symbiotically essential two-component system that regulates nitrogen-fixation genes in response to environmental oxygen concentrations. FixL is a membrane protein that is thought to relay information about oxygen availability to FixJ via a phosphotransfer mechanism. FixJ increases expression of the nifA and fixK genes by activating transcription of the nifA and fixK promoters (p-nifA and p-fixK, respectively). In this study, we examined the relationship between the in vivo activity of FixJ as a transcriptional regulator and its ability to be phosphorylated in vitro by the sensor FixL. FixJ mutants were isolated that showed decreased activity on p-nifA in Escherichia coli. Most of the FixJ mutant proteins also showed decreased activity on the fixK promoter. These mutants were analysed in R. meliloti for activity on p-nifA during vegetative growth, where similarities and differences were observed when compared with their phenotypes in E. coli. Three mutants showing significantly less activity in R. meliloti were examined for symbiotic activity in planta and were found to be ineffective. When these three mutant FixJ proteins were examined in vitro for their ability to be phosphorylated by FixL, two mutants were found to have a significantly decreased ability to accept phosphate from FixL. These findings are discussed in relation to signal transduction in the FixLJ system.


Assuntos
Proteínas de Bactérias/genética , Mutação , Sinorhizobium meliloti/isolamento & purificação , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Hemeproteínas/genética , Hemeproteínas/metabolismo , Histidina Quinase , Fosforilação , Plantas/genética , Plantas/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo
17.
J Bacteriol ; 174(12): 4120-9, 1992 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1597427

RESUMO

The nifA gene of Rhizobium meliloti, the bacterial endosymbiont of alfalfa, is a regulatory nitrogen fixation gene required for the induction of several key nif and fix genes. Transcription of nifA is strongly induced in planta and under microaerobic conditions ex planta. Induction of nifA, in turn, is positively controlled by the fixL and fixJ genes of R. meliloti, the sensor and regulator, respectively, of a two-component system responsible for oxygen sensing by this bacterium. This system is also responsible for the positive induction of fixK. Here, we report that chemical and oligonucleotide site-directed mutageneses of the nifA promoter (nifAp) were conducted to identify nucleotides essential for induction. Nineteen mutants, including 14 single-point mutants, were analyzed for microaerobic induction of nifAp in R. meliloti. Critical residues were identified in an upstream region between base pairs -54 and -39 relative to the transcription start site. Attempts at separating the upstream and downstream regions of the nifA promoter so as to maintain fixJ-dependent activity were unsuccessful. A 5' deletion of the fixK promoter (fixKp) to -67 indicates that sequences upstream of this position are not required for microaerobic induction. A sequence comparison of the -54 to -39 region of nifAp with the upstream sequences of fixKp does not reveal a block of identical nucleotides that could account for the fixJ-dependent microaerobic induction of both promoters. Many of the defective nifAp mutants in this region, however, are in residues with identity to fixKp in an alignment of the promoters according to their transcription start sites. Therefore, it is possible that there is a common sequence motif in the -54 to -39 region of the two promoters that is required for fixLJ-dependent microaerobic induction.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Sinorhizobium meliloti/genética , Fatores de Transcrição/genética , Sequência de Bases , Análise Mutacional de DNA , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/genética , Plasmídeos/genética , Proteínas Recombinantes de Fusão/genética
18.
Proc Natl Acad Sci U S A ; 89(10): 4280-4, 1992 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-1584762

RESUMO

Transcription of nitrogen fixation (nif and fix) genes in Rhizobium meliloti is induced by a decrease in oxygen concentration. The products of two genes, fixL and fixJ, are responsible for sensing and transmitting the low-oxygen signal. The proteins encoded by fixL and fixJ (FixL and FixJ, respectively) are homologous to a family of bacterial proteins that transduce environmental signals through a common phosphotransfer mechanism [David, M., Daveran, M., Batut, J., Dedieu, A., Domergue, O., Ghai, J., Hertig, C., Boistard, P. & Khan, D. (1988) Cell 54, 671-683]. FixL, the oxygen sensor, is a membrane protein. It has previously been shown that a soluble derivative of FixL, FixL*, is an oxygen-binding hemoprotein and a kinase that autophosphorylates and also phosphorylates FixJ [Gilles-Gonzalez, M. A., Ditta, G. S. & Helinski, D. R. (1991) Nature (London) 350, 170-172]. In this work, deletion derivatives of fixL* were constructed and overexpressed in Escherichia coli, and the truncated proteins were purified. We show that a fragment of FixL from amino acid residue 127 to residue 260 binds heme, retains the ability to bind oxygen, and has no detectable kinase activity. A C-terminal fragment of FixL, beginning at residue 260, fails to bind heme but is active as a kinase. We also demonstrate that anaerobiosis results in an enhancement of FixL* autophosphorylation and FixJ phosphorylation activities in vitro. Finally, we show that the heme-binding region of FixL is required in vitro for oxygen regulation of its kinase activities.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Hemeproteínas/genética , Fixação de Nitrogênio/genética , Proteínas Quinases/genética , Sinorhizobium meliloti/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Deleção Cromossômica , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Heme/metabolismo , Hemeproteínas/isolamento & purificação , Hemeproteínas/metabolismo , Histidina Quinase , Peso Molecular , Fosforilação , Proteínas Quinases/isolamento & purificação , Proteínas Quinases/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Sinorhizobium meliloti/metabolismo
19.
Mol Microbiol ; 5(4): 987-97, 1991 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1857213

RESUMO

The FixL/FixJ two-component system is a global regulator of nitrogen-fixation genes in Rhizobium meliloti. The transcriptional activator FixJ contains two modules: its N-terminal module is homologous with other two-component regulators; its C-terminal module shows homology with various transcriptional activators, and with the C-terminal region of sigma factors, which is involved in the discrimination of the -35 region of bacterial promoters. We show that the C-terminal module of FixJ contains the entire transcription activation function, and that the N-terminal module regulates this activity negatively. Oligonucleotide-directed mutagenesis of the transcriptional activator module demonstrated the importance of a potential helix-turn-helix structure.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Fixação de Nitrogênio/genética , Rhizobium/genética , Fator sigma/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Análise Mutacional de DNA , Substâncias Macromoleculares , Dados de Sequência Molecular , Plasmídeos/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/metabolismo
20.
Nature ; 350(6314): 170-2, 1991 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-1848683

RESUMO

The expression of the nitrogen-fixation genes of Rhizobium meliloti is controlled by oxygen. These genes are induced when the free oxygen concentration is reduced to microaerobic levels. Two regulator proteins, FixL and FixJ, initiate the oxygen-response cascade, and the genes that encode them have been cloned. The fixL product seems to be a transmembrane sensor that modulates the activity of the fixJ product, a cytoplasmic regulator. FixL and FixJ are homologous to a family of bacterial two-component regulators, for which the mode of signal transduction is phosphorylation. We report here the purification of both FixJ and a soluble truncated FixL (FixL*), overproduced from a single plasmid construct. FixL* catalyses its own phosphorylation and the transfer of the gamma-phosphate of ATP to Fix J. The resulting FixJ-phosphate linkage is sensitive to base, as are the aspartyl phosphates of homologous systems. Visible spectra of purified FixL* show that it is an oxygen-binding haemoprotein. We propose that FixL senses oxygen through its haem moiety and transduces this signal by controlling the phosphorylation of FixJ.


Assuntos
Proteínas de Bactérias/metabolismo , Hemeproteínas/metabolismo , Oxigênio/metabolismo , Fosfotransferases/metabolismo , Rhizobium/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Hemeproteínas/genética , Hemeproteínas/isolamento & purificação , Histidina Quinase , Dados de Sequência Molecular , Fosforilação , Rhizobium/genética , Transdução de Sinais , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...