Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 8(2): 212-23, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16547866

RESUMO

Upon exposure to waterlogged growing conditions two-year-old alder trees reduced total root mass. Roots were concentrated in the uppermost soil horizon, and only few coarse roots penetrated into deeper soil layers. Root porosity was only slightly affected and did not exceed 8 % in fine roots. Porosity of coarse roots was higher (27 %) but unaffected by growing conditions. The stem base area covered by lenticels increased strongly and so did the cross section diameter of the stem base. The latter showed a highly significant correlation with O (2) transport into the roots, measured by a Clark type oxygen electrode. Exposure of the lower 5 cm of the stem base, where lenticels were concentrated, to pure N (2) led to a cessation of O (2) transport, confirming that lenticels were the major site of air entry into the stem. In alder plants grown under waterlogged conditions, temperature had a pronounced effect on O (2) gas exchange of the root system. The temperature compensation point, i.e., the temperature where O (2) transport equals O (2) consumption by respiration, was 10.5 degrees C for the entire root system, when measured in a range of 0.15 - 0.20 mmol dissolved O (2) L (-1), which is typical for an open water surface equilibrated with air. O (2) net flow was inversely related to O (2) concentration in the rooting media, indicating that higher root and microbial respiration induced higher net fluxes of O (2) into the root system. With 0.04 mmol dissolved O (2) L (-1) nutrient solution, the temperature compensation point increased to 20 degrees C. Measurement of O (2) gradients in the rhizosphere of agar-embedded roots using O (2) microelectrodes showed a preference for O (2) release in the tip region of coarse roots. Increasing stem temperature over air temperature by 5 degrees C stimulated O (2) flux into the roots as suggested by the model of thermo-osmotic gas transport. However determination of stem and air temperature in a natural alder swamp in northern Germany revealed that within the experimental period of almost one year, temperature gradients required for thermo-osmotic gas transport were very seldom. From this it is concluded that under natural conditions in northern Germany, oxygen diffusion along the stem into the root system is driven by O (2) concentration gradients rather than by thermo-osmosis.


Assuntos
Alnus/metabolismo , Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Alnus/crescimento & desenvolvimento , Anaerobiose , Ecossistema , Caules de Planta/metabolismo , Solo , Temperatura , Fatores de Tempo , Água
2.
Rapid Commun Mass Spectrom ; 15(15): 1291-6, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11466787

RESUMO

Recent recommendations for environmentally sound use of liquid animal manure often include injection of slurry into soil. Two of the most important undesired side effects, ammonia (NH(3)) volatilisation and odour emissions, are usually significantly reduced by slurry injection. On the other hand, because of the higher amount of nitrogen (N) remaining in soil, the risk of nitrate (NO(3)(-)) leaching and nitrous oxide (N(2)O) emissions is increased. Thus, the reduction of local effects caused by NH(3) deposition, e.g. N enrichment and soil acidification, may be at the cost of large-scale effects such as ozone depletion and global warming as a result of emitted N(2)O. In this context, nitrification inhibitors can contribute significantly to a reduction in NO(3)(-) leaching and N(2)O production. A field experiment was carried out at IGER, North Wyke, which aimed to evaluate the effect of the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP/ENTEC). For this experiment, (15)N enriched dairy slurry was used and the isotopic label in soil N as well as in N(2)O were studied. After slurry injection into the grassland soil in August 2000, the major emissions of N(2)O occurred during the first ten days. As expected, high N(2)O emission rates and (15)N content of the emissions were concentrated on the slurry injection slots, showing a steep decrease towards the untreated centre-point between slurry injection slots. The nitrification inhibitor DMPP proved to be very efficient in reducing N(2)O emissions. At a rate of 2 kg DMPP ha(-1), the total amount of N(2)O emitted was reduced by 32%, when compared with slurry injection without DMPP. The isotopic label of the emitted N(2)O showed that during the 22-day experimental period, emissions from the slurry N pool were strongly reduced by DMPP from 0.93 kg N(2)O-N ha(-1) (-DMPP) to 0.50 kg N(2)O-N ha(-1) (+DMPP), while only a minor effect on emissions from the soil N pool was observed (0.69 to 0.60 kg N(2)O-N ha(-1); -DMPP, +DMPP, respectively).


Assuntos
Nitratos/análise , Nitratos/química , Isótopos de Nitrogênio/análise , Nitrogênio/metabolismo , Poluentes do Solo/análise , Algoritmos , Amônia/química , Animais , Animais Domésticos , Clima , Ecossistema , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Fertilizantes/toxicidade , Marcação por Isótopo , Esterco , Óxido Nitroso/análise , Óxido Nitroso/química , Pirazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...