Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Manage ; 72(2): 333-342, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37004534

RESUMO

A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Agricultura , Adaptação Fisiológica , Nutrientes
2.
J Environ Qual ; 49(5): 1236-1250, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016461

RESUMO

A critical question is whether there are agricultural management practices that can attain the multiple management goals of increasing yields, preventing nutrient losses, and suppressing greenhouse gas (GHG) emissions. No-till and manure application methods, such as manure injection, can enhance nutrient retention, but both may also enhance emissions of nitrous oxide (N2 O), a powerful GHG. We assessed differences in soil N2 O and carbon dioxide (CO2 ) emissions, nitrate and ammonium retention, and crop yield and protein content under combinations of vertical-till, no-till, manure injection, and manure broadcast without incorporation in a corn (Zea mays L.) silage system. During the growing seasons of 2015-2017, GHG emissions and soil mineral nitrogen (N) were measured every other week or more frequently after management events. Crop yield and protein content were measured annually at harvest. No-till reduced CO2 emissions but had no impact on N2 O emissions relative to vertical-till. Manure injection increased N2 O and CO2 emissions, with the magnitude of this effect being greatest for 1 mo post-application. Manure injection also increased soil ammonium and nitrate but did not increase yield or crop quality relative to broadcast application. Similarly, tillage did not affect crop yield or protein content. Despite the tradeoffs between mineral N retention and elevated GHG emissions, manure injection in no-till systems benefits farmers by reducing soil carbon losses as CO2 , retaining mineral N, and maintaining crop yields and quality.


Assuntos
Esterco , Silagem , Óxido Nitroso/análise , Solo , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...