Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37761584

RESUMO

The rapid advancement of wireless communication combined with insufficient spectrum exploitation opens the door for the expansion of novel wireless services. Cognitive radio network (CRN) technology makes it possible to periodically access the open spectrum bands, which in turn improves the effectiveness of CRNs. Spectrum sensing (SS), which allows unauthorized users to locate open spectrum bands, plays a fundamental part in CRNs. A precise approximation of the power spectrum is essential to accomplish this. On the assumption that each SU's parameter vector contains some globally and partially shared parameters, spectrum sensing is viewed as a parameter estimation issue. Distributed and cooperative spectrum sensing (CSS) is a key component of this concept. This work introduces a new component-specific cooperative spectrum sensing model (CSCSSM) in CRNs considering the amplitude and phase components of the input signal including Component Specific Adaptive Estimation (CSAE) for mean squared deviation (MSD) formulation. The proposed concept ensures minimum information loss compared to the traditional methods that consider error calculation among the direct signal vectors. The experimental results and performance analysis prove the robustness and efficiency of the proposed work over the traditional methods.

2.
Brain Sci ; 13(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371371

RESUMO

In the present scenario, Alzheimer's Disease (AD) is one of the incurable neuro-degenerative disorders, which accounts for nearly 60% to 70% of dementia cases. Currently, several machine-learning approaches and neuroimaging modalities are utilized for diagnosing AD. Among the available neuroimaging modalities, functional Magnetic Resonance Imaging (fMRI) is extensively utilized for studying brain activities related to AD. However, analyzing complex brain structures in fMRI is a time-consuming and complex task; so, a novel automated model was proposed in this manuscript for early diagnosis of AD using fMRI images. Initially, the fMRI images are acquired from an online dataset: Alzheimer's Disease Neuroimaging Initiative (ADNI). Further, the quality of the acquired fMRI images was improved by implementing a normalization technique. Then, the Segmentation by Aggregating Superpixels (SAS) method was implemented for segmenting the brain regions (AD, Normal Controls (NC), Mild Cognitive Impairment (MCI), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Significant Memory Concern (SMC)) from the denoised fMRI images. From the segmented brain regions, feature vectors were extracted by employing Gabor and Gray Level Co-Occurrence Matrix (GLCM) techniques. The obtained feature vectors were dimensionally reduced by implementing Honey Badger Optimization Algorithm (HBOA) and fed to the Multi-Layer Perceptron (MLP) model for classifying the fMRI images as AD, NC, MCI, EMCI, LMCI, and SMC. The extensive investigation indicated that the presented model attained 99.44% of classification accuracy, 88.90% of Dice Similarity Coefficient (DSC), 90.82% of Jaccard Coefficient (JC), and 88.43% of Hausdorff Distance (HD). The attained results are better compared with the conventional segmentation and classification models.

3.
Sensors (Basel) ; 22(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35632170

RESUMO

In modern trends, wireless sensor networks (WSNs) are interesting, and distributed in the environment to evaluate received data. The sensor nodes have a higher capacity to sense and transmit the information. A WSN contains low-cost, low-power, multi-function sensor nodes, with limited computational capabilities, used for observing environmental constraints. In previous research, many energy-efficient routing methods were suggested to improve the time of the network by minimizing energy consumption; sometimes, the sensor nodes run out of power quickly. The majority of recent articles present various methods aimed at reducing energy usage in sensor networks. In this paper, an energy-efficient clustering/routing technique, called the energy and distance based multi-objective red fox optimization algorithm (ED-MORFO), was proposed to reduce energy consumption. In each communication round of transmission, this technique selects the cluster head (CH) with the most residual energy, and finds the optimal routing to the base station. The simulation clearly shows that the proposed ED-MORFO achieves better performance in terms of energy consumption (0.46 J), packet delivery ratio (99.4%), packet loss rate (0.6%), end-to-end delay (11 s), routing overhead (0.11), throughput (0.99 Mbps), and network lifetime (3719 s), when compared with existing MCH-EOR and RDSAOA-EECP methods.

4.
Sensors (Basel) ; 21(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833686

RESUMO

Smart home and smart building systems based on the Internet of Things (IoT) in smart cities currently suffer from security issues. In particular, data trustworthiness and efficiency are two major concerns in Internet of Things (IoT)-based Wireless Sensor Networks (WSN). Various approaches, such as routing methods, intrusion detection, and path selection, have been applied to improve the security and efficiency of real-time networks. Path selection and malicious node discovery provide better solutions in terms of security and efficiency. This study proposed the Dynamic Bargaining Game (DBG) method for node selection and data transfer, to increase the data trustworthiness and efficiency. The data trustworthiness and efficiency are considered in the Pareto optimal solution to select the node, and the bargaining method assigns the disagreement measure to the nodes to eliminate the malicious nodes from the node selection. The DBG method performs the search process in a distributed manner that helps to find an effective solution for the dynamic networks. In this study, the data trustworthiness was measured based on the node used for data transmission and throughput was measured to analyze the efficiency. An SF attack was simulated in the network and the packet delivery ratio was measured to test the resilience of the DBG and existing methods. The results of the packet delivery ratio showed that the DBG method has higher resilience than the existing methods in a dynamic network. Moreover, for 100 nodes, the DBG method has higher data trustworthiness of 98% and throughput of 398 Mbps, whereas the existing fuzzy cross entropy method has data trustworthiness of 94% and a throughput of 334 Mbps.


Assuntos
Internet das Coisas , Cidades , Teoria dos Jogos , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...