Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759651

RESUMO

The transcription factor Math6, mouse atonal homolog 6, belongs to the family of highly conserved basic helix-loop-helix transcription factors. It plays an important role in embryonic development and shows a wide expression pattern in murine tissues. The placenta, as a life-sustaining transient organ for the fetus, also depends on the expression of Math6. The adverse effects of deleting Math6 in mice, leading to deficient placental development and pregnancy loss, have already been demonstrated by us. Until now, detailed investigations regarding the specific mechanisms underlying the improper placental development in these murine mutants have failed, as the Math6 expression could not be confined to a specific cell type due to the lack of a highly specific Math6 antibody. To circumvent this problem, we used transgenic mice, where Math6 is marked with a Flag sequence that functions as a specific epitope. Tissues from these transgenic mice were used to establish immunohistochemical staining and fluorescence-activated cell sorting (FACS). The establishment of these methods yielded initial findings pertaining to the identification of Math6-expressing cell types and their localization. Our results reveal that Math6 shows a wide expression pattern in both maternal and fetal components of the murine placenta. It shows expression in various cell types, but predominantly in trophoblast giant cells, endothelial cells and macrophages. The largest subpopulation that we detected in the group of Math6-positive cells were identified as DBA+ uterine natural killer cells. These findings reveal information and a chance for further investigation on the involvement of Math6 in placental development and the molecular pathomechanisms of spontaneous abortion.

2.
Biology (Basel) ; 12(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237470

RESUMO

Prenatal stress exposure is considered a risk factor for developmental deficits and postnatal behavioral disorders. While the effect of glucocorticoid-associated prenatal stress exposure has been comprehensively studied in many organ systems, there is a lack of in-depth embryological investigations regarding the effects of stress on the integumentary system. To approach this, we employed the avian embryo as a model organism and investigated the effects of systemic pathologically-elevated glucocorticoid exposure on the development of the integumentary system. After standardized corticosterone injections on embryonic day 6, we compared the stress-exposed embryos with a control cohort, using histological and immunohistochemical analyses as well as in situ hybridization. The overarching developmental deficits observed in the stress-exposed embryos were reflected through downregulation of both vimentin as well as fibronectin. In addition, a deficient composition in the different skin layers became apparent, which could be linked to a reduced expression of Dermo-1 along with significantly reduced proliferation rates. An impairment of skin appendage formation could be demonstrated by diminished expression of Sonic hedgehog. These results contribute to a more profound understanding of prenatal stress causing severe deficits in the integumentary system of developing organisms.

3.
Front Cell Dev Biol ; 10: 950414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060799

RESUMO

Atonal Homolog 8 (Atoh8) belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) transcription factors. Atoh8 (murine homolog "Math6") has been shown to be involved in organogenesis during murine embryonic development. We have previously identified the expression of Atoh8 during skeletal myogenesis in chicken where we described its involvement in hypaxial myotome formation suggesting a regulatory role of Atoh8 in skeletal muscle development. Within the current study, we analyzed the effect of the loss of function of Atoh8 in murine primary myoblasts and during differentiation of pluripotent stem cells into myotubes, and the effect of its gain of function in C2C12 cells. Based on the observed results, we conclude that Atoh8 regulates myoblast proliferation via modulating myostatin signaling. Further, our data revealed a reduced muscle mass, strength and fiber size with significant changes to the muscle fiber type suggesting atrophy in skeletal muscle of Atoh8 mutants. We further report that Atoh8 knockout mice suffer from a condition similar to ambient hypoxia which may be the primary cause of the phenotype. Altogether, this study shows the significance of Atoh8 not only in myogenesis but also in the maintenance of skeletal muscle.

4.
Biology (Basel) ; 11(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053134

RESUMO

Atoh8 belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) proteins. bHLH proteins have been identified in a wide range of organisms from yeast to humans. The members of this special group of transcription factors were found to be involved not only in embryonic development but also in disease initiation and its progression. Given their importance in several fundamental processes, the translation, subcellular location and turnover of bHLH proteins is tightly regulated. Alterations in the expression of bHLH proteins have been associated with multiple diseases also in context with Atoh8 which seems to unfold its functions as both transcriptional activator and repressor. Like many other bHLH transcription factors, so far, Atoh8 has also been observed to be involved in both embryonic development and carcinogenesis where it mainly acts as tumor suppressor. This review summarizes our current understanding of Atoh8 structure, function and regulation and its complex and partially controversial involvement in development and disease.

5.
Histochem Cell Biol ; 156(3): 209-226, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34120256

RESUMO

Atonal homologue 8 (atoh8) is a basic helix-loop-helix transcription factor expressed in a variety of embryonic tissues. While several studies have implicated atoh8 in various developmental pathways in other species, its role in zebrafish development remains uncertain. So far, no studies have dealt with an in-depth in situ analysis of the tissue distribution of atoh8 in embryonic zebrafish. We set out to pinpoint the exact location of atoh8 expression in a detailed spatio-temporal analysis in zebrafish during the first 24 h of development (hpf). To our surprise, we observed transcription from pre-segmentation stages in the paraxial mesoderm and during the segmentation stages in the somitic sclerotome and not-as previously reported-in the myotome. With progressing maturation of the somites, the restriction of atoh8 to the sclerotomal compartment became evident. Double in situ hybridisation with atoh8 and myoD revealed that both genes are expressed in the somites at coinciding developmental stages; however, their domains do not spatially overlap. A second domain of atoh8 expression emerged in the embryonic brain in the developing cerebellum and hindbrain. Here, we observed a specific expression pattern which was again in contrast to the previously published suggestion of atoh8 transcription in neural crest cells. Our findings point towards a possible role of atoh8 in sclerotome, cerebellum and hindbrain development. More importantly, the results of this expression analysis provide new insights into early sclerotome development in zebrafish-a field of research in developmental biology which has not received much attention so far.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Desenvolvimento Embrionário , Peixe-Zebra/embriologia
6.
Cells ; 8(6)2019 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159500

RESUMO

The basic helix-loop-helix (bHLH) transcription factor Math6 (Atonal homolog 8; Atoh8) plays a crucial role in a number of cellular processes during embryonic development, iron metabolism and tumorigenesis. We report here on its involvement in cellular reprogramming from fibroblasts to induced pluripotent stem cells, in the maintenance of pluripotency and in early fate decisions during murine development. Loss of Math6 disrupts mesenchymal-to-epithelial transition during reprogramming and primes pluripotent stem cells towards the mesendodermal fate. Math6 can thus be considered a regulator of reprogramming and pluripotent stem cell fate. Additionally, our results demonstrate the involvement of Math6 in SMAD-dependent TGF beta signalling. We furthermore monitor the presence of the Math6 protein during these developmental processes using a newly generated Math6Flag-tag mouse. Taken together, our results suggest that Math6 counteracts TGF beta signalling and, by this, affects the initiating step of cellular reprogramming, as well as the maintenance of pluripotency and early differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Reprogramação Celular , Células-Tronco Pluripotentes/citologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...