Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 9(1): 54, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463938

RESUMO

On the Earth, the human body is designed and adapted to function under uniform gravitational acceleration. However, exposure to microgravity or weightlessness as experienced by astronauts in space causes significant alterations in the functioning of the human cardiovascular system. Due to limitations in using real microgravity platforms, researchers opted for various ground-based microgravity analogs including head-down tilt (HDT) at fixed inclination. However, in the present study, an investigation of response of various cardiac parameters and their circulatory adaptation in 18 healthy male subjects was undertaken by using an indigenously developed 360° rotating platform. Cardiac pulse was recorded from 0° to 360° in steps of 30° inclination using piezoelectric pulse sensor (MLT1010) and associated cardiac parameters were analyzed. The results showed significant changes in the pulse shape while an interesting oscillating pattern was observed in associated cardiac parameters when rotated from 0° to 360°. The response of cardiac parameters became normal after returning to supine posture indicating the ability of the cardiovascular system to reversibly adapt to the postural changes. The observed changes in cardiac parameters at an inclination of 270°, in particular, were found to be comparable with spaceflight studies. Based on the obtained results and the proposed extended version of fluid redistribution mechanism, we herewith hypothesize that the rotation of a subject to head down tilt inclination (270°) along with other inclinations could represent a better microgravity analog for understanding the cumulative cardiac response of astronauts in space, particularly for short duration space missions.

2.
PLoS Negl Trop Dis ; 12(12): e0006801, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30521518

RESUMO

Many human parasites and pathogens have closely related counterparts among non-human primates. For example, non-human primates harbour several species of malaria causing parasites of the genus Plasmodium. Studies suggest that for a better understanding of the origin and evolution of human malaria parasites it is important to know the diversity and evolutionary relationships of these parasites in non-human primates. Much work has been undertaken on malaria parasites in wild great Apes of Africa as well as wild monkeys of Southeast Asia however studies are lacking from South Asia, particularly India. India is one of the major malaria prone regions in the world and exhibits high primate diversity which in turn provides ideal setting for both zoonoses and anthropozoonoses. In this study we report the molecular data for malaria parasites from wild populations of Indian non-human primates. We surveyed 349 fecal samples from five different Indian non-human primates, while 94 blood and tissue samples from one of the Indian non-human primate species (Macaca radiata) and one blood sample from M. mulatta. Our results confirm the presence of P. fragile, P. inui and P. cynomolgi in Macaca radiata. Additionally, we report for the first time the presence of human malarial parasite, P. falciparum, in M. mulatta and M. radiata. Additionally, our results indicate that M. radiata does not exhibit population structure probably due to human mediated translocation of problem monkeys. Human mediated transport of macaques adds an additional level of complexity to tacking malaria in human. This issue has implications for both the spread of primate as well as human specific malarias.


Assuntos
Macaca mulatta/parasitologia , Macaca radiata/parasitologia , Malária/veterinária , Doenças dos Macacos/parasitologia , Plasmodium/isolamento & purificação , Animais , Fezes/parasitologia , Feminino , Humanos , Índia/epidemiologia , Malária/epidemiologia , Malária/parasitologia , Masculino , Doenças dos Macacos/epidemiologia , Zoonoses
3.
3 Biotech ; 7(1): 30, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28401467

RESUMO

Gravity is the fundamental force that may have operated during the evolution of life on Earth. It is thus important to understand as to what the effects of gravity are on cellular life. The studies related to effect of microgravity on cells may provide greater insights in understanding of how the physical force of gravity shaped life on Earth. The present study focuses on a unique group of organisms called the Haloarchaea, which are known for their extreme resistance to survive in stress-induced environments. The aim of the present investigation was to study the effect of simulated microgravity on physiological response of extremely halophilic archaeon, Haloarcula argentinensis RR10, under slow clinorotation. The growth kinetics of the archaeon in microgravity was studied using the Baryani model and the viable and apoptotic cells were assessed using propidium iodide fluorescent microscopic studies. The physiological mechanism of adaptation was activation of 'salt-in' strategy by intracellular sequestration of sodium ions as detected by EDAX. The organism upregulated the production of ribosomal proteins in simulated microgravity as evidenced by Matrix-assisted laser desorption ionization Time of flight-Mass Spectrophotometry. Simulated microgravity altered the antibiotic susceptibility of the haloarchaeon and it developed resistance to Augmentin, Norfloxacin, Tobramycin and Cefoperazone, rendering it a multidrug resistant strain. The presence of antibiotic efflux pump was detected in the haloarchaeon and it also enhanced production of protective carotenoid pigment in simulated microgravity. The present study is presumably the first report of physiological response of H. argentinensis RR10 in microgravity simulated under slow clinorotation.

4.
Mol Ecol ; 23(22): 5599-618, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25266341

RESUMO

Utilization of multiple putatively neutral DNA markers for inferring evolutionary history of species population is considered to be the most robust approach. Molecular population genetic studies have been conducted in many species of Anopheles genus, but studies based on single nucleotide polymorphism (SNP) data are still very scarce. Anopheles minimus is one of the principal malaria vectors of Southeast (SE) Asia including the Northeastern (NE) India. Although population genetic studies with mitochondrial genetic variation data have been utilized to infer phylogeography of the SE Asian populations of this species, limited information on the population structure and demography of Indian An. minimus is available. We herewith have developed multilocus nuclear genetic approach with SNP markers located in X chromosome of An. minimus in eight Indian and two SE Asian population samples (121 individual mosquitoes in total) to infer population history and test several hypotheses on the phylogeography of this species. While the Thai population sample of An. minimus presented the highest nucleotide diversity, majority of the Indian samples were also fairly diverse. In general, An. minimus populations were moderately substructured in the distribution range covering SE Asia and NE India, largely falling under three distinct genetic clusters. Moreover, demographic expansion events could be detected in the majority of the presently studied populations of An. minimus. Additional DNA sequencing of the mitochondrial COII region in a subset of the samples (40 individual mosquitoes) corroborated the existing hypothesis of Indian An. minimus falling under the earlier reported mitochondrial lineage B.


Assuntos
Anopheles/genética , Marcadores Genéticos , Variação Genética , Genética Populacional , Animais , Sudeste Asiático , Núcleo Celular/genética , DNA Mitocondrial/genética , Fluxo Gênico , Índia , Desequilíbrio de Ligação , Dados de Sequência Molecular , Filogeografia , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Análise de Sequência de DNA , Cromossomo X/genética
5.
Infect Genet Evol ; 11(3): 572-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21251999

RESUMO

Estimation of population genetic parameters is highly dependent on the choice of genetic markers. Furthermore, inferences based on single genes could lead to erroneous conclusions and population genetic outcomes, thus usage of multiple loci is suggested. Considering malaria is a highly fatal vector-borne infectious disease, inference on population genetic structure and demography could be of help in the long run for malaria vector management and control. Using the published genome sequence information of Anopheles gambiae we designed EPIC primers to amplify DNA fragments in An. minimus nuclear genome. Eight such DNA fragments could be successfully amplified and sequenced and homology to corresponding genes of An. gambiae was established. All the eight DNA fragments were found to be polymorphic for single nucleotide polymorphisms (SNPs) in a population sample of An. minimus from India. Several tests of neutrality confirmed that all the eight fragments evolve under a standard neutral model of molecular evolution. Furthermore, multilocus linkage disequilibrium studies revealed that the DNA fragments were not genetically linked to each other and thus are independently evolving. Tests of past population demographic events clearly revealed that this Indian population of An. minimus follows demographic equilibrium model, without any significant recent population bottleneck or expansion. The eight multilocus nuclear DNA fragments thus could be considered as 'putatively neutral' and be used to infer population structure and demographic history of An. minimus, a major malaria vector in the Southeast Asia and India. Moreover, the estimations of population demography using these putatively neutral markers can provide a baseline against which, test for the role of natural selection in functionally relevant genes of An. minimus would be possible.


Assuntos
Anopheles/genética , Loci Gênicos , Marcadores Genéticos , Animais , Feminino , Deriva Genética , Variação Genética , Haplótipos , Índia , Desequilíbrio de Ligação , Modelos Genéticos , Tipagem de Sequências Multilocus , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
6.
Infect Genet Evol ; 10(6): 755-63, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20435167

RESUMO

Inferences on the taxonomic positions, phylogenetic interrelationships and divergence time among closely related species of medical importance is essential to understand evolutionary patterns among species, and based on which, disease control measures could be devised. To this respect, malaria is one of the important mosquito borne diseases of tropical and sub-tropical parts of the globe. Taxonomic status of malaria vectors has been so far documented based on morphological, cytological and few molecular genetic features. However, utilization of multilocus DNA sequences in phylogenetic inferences are still in dearth. India contains one of the richest resources of mosquito species diversity but little molecular taxonomic information is available in Indian malaria vectors. We herewith utilized the whole genome sequence information of An. gambiae to amplify and sequence three orthologous nuclear genetic regions in six Indian malaria vector species (An. culicifacies, An. minimus, An. sundaicus, An. fluviatilis, An. annularis and An. stephensi). Further, we utilized the previously published DNA sequence information on the COII and ITS2 genes in all the six species, making the total number of loci to five. Multilocus molecular phylogenetic study of Indian anophelines and An. gambiae was conducted at each individual genetic region using Neighbour Joining (NJ), Maximum Likelihood (ML), Maximum Parsimony (MP) and Bayesian approaches. Although tree topologies with COII, and ITS2 genes were similar, for no other three genetic regions similar tree topologies were observed. In general, the reconstructed phylogenetic status of Indian malaria vectors follows the pattern based on morphological and cytological classifications that was reconfirmed with COII and ITS2 genetic regions. Further, divergence times based on COII gene sequences were estimated among the seven Anopheles species which corroborate the earlier hypothesis on the radiation of different species of the Anopheles genus during the late Cretaceous period.


Assuntos
Insetos Vetores/classificação , Insetos Vetores/genética , Malária , Análise de Sequência de DNA/métodos , Animais , Anopheles/classificação , Anopheles/genética , Sequência de Bases , Teorema de Bayes , Loci Gênicos/genética , Humanos , Índia , Funções Verossimilhança , Malária/transmissão , Dados de Sequência Molecular , Filogenia
7.
Infect Genet Evol ; 10(5): 620-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20394842

RESUMO

Insecticide resistance (IR) is one of the major obstacles in insect pests and insect borne disease control strategies, the mechanism of which is known to be genetically controlled. Three major gene families (CYP, GST and COE) have been identified encoding various proteins to metabolize endogenous as well as exogenous compounds that are responsible for IR mechanisms in insects. Understanding evolutionary patterns of genes of such important functions could lead to important understanding, based on which, further studies to control various insect borne infectious diseases could be initiated. We herein utilized the whole genome sequence information of the malaria vector Anopheles gambiae and inferred evolutionary pattern of the three known IR gene families (CYP, GST and COE). The pattern of conservation of IR genes across 38 other taxa was determined to infer evolutionary pattern of these gene families. Chromosomal distribution of IR genes was ascertained and each individual gene of IR gene families was also mapped on the chromosomal arms of An. gambiae. Differential distributional and quantitative aspects of introns in each gene were determined and genetic architecture of genes from all three gene families was compared to draw differential evolution of IR gene families. Further, phylogenetic relationships among genes of each of the three gene families were also inferred. These results in correlation with chromosomal location of each gene have provided valuable information about evolutionary history of IR gene families.


Assuntos
Anopheles/genética , Evolução Molecular , Genes de Insetos , Resistência a Inseticidas/genética , Família Multigênica , Animais , Sequência de Bases , Mapeamento Cromossômico , Conversão Gênica , Genoma , Humanos , Insetos Vetores/genética , Íntrons , Malária/transmissão , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...