Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(10): 328, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37620623

RESUMO

Intensifying sodic land characterized by high alkaline pH is an incipient environmental hazard-limiting agricultural potential. In this study, we investigated the effects of plant growth-promoting bacteria Ochrobactrum sp. strain NBRISH6 on the growth and physiology of maize (Zea mays L.) grown under alkaline stress at two soil pH levels. Additionally, we also studied the effects of NBRISH6 on soil fertility parameters. A greenhouse experiment was designed using two live soils (pH 8.2 and 10.2) in earthen pots using maize as a host. Results revealed a significant increase in plant growth and a decrease in defense enzymes in both soil types due to NBRISH6 inoculation as compared to non-treated control. Furthermore, activities of all soil enzymes along with bacterial diversity increased in NBRISH6 treatment under normal as well as stressed conditions. In addition, field evaluation of NBRISH6 inoculation using maize was carried out under normal and alkaline conditions, which resulted in significant enhancement of all vegetative parameters as compared to respective controls. Therefore, the study suggested that Ochrobactrum sp. NBRISH6 can be used to develop a bioinoculant formulation to ameliorate abiotic stresses and enhanced crop productivity.


Assuntos
Ochrobactrum , Solo , Zea mays , Agricultura , Imunidade Vegetal
2.
NMR Biomed ; 34(7): e4526, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33880799

RESUMO

In acute-ischemic-stroke patients, penumbra assessment plays a significant role in treatment outcome. MR perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) mismatch ratio can provide penumbra assessment. Recently reported studies have shown the potential of susceptibility-weighted imaging (SWI) in the qualitative assessment of penumbra. We hypothesize that quantitative penumbra assessment using SWI-DWI can provide an alternative to the PWI-DWI approach and this can also reduce the overall scan-time. The purpose of the current study was to develop a framework for accurate quantitative assessment of penumbra using SWI-DWI and its validation with PWI-DWI-based quantification. In the current study, the arterial-spin-labelling (ASL) technique has been used for PWI. This retrospective study included 25 acute-ischemic-stroke patients presenting within 24 hours of the last noted baseline condition of stroke onset. Eleven patients also had follow-up MRI within 48 hours. MRI acquisition comprised DWI, SWI, pseudo-continuous-ASL (pCASL), FLAIR and non-contrast-angiography sequences. A framework was developed for the enhancement of prominent hypo-intense vein signs followed by automatic segmentation of the SWI penumbra ROI. Apparent-diffusion-coefficient (ADC) maps and cerebral-blood-flow (CBF) maps were computed. The infarct core ROI from the ADC map and the ASL penumbra ROI from CBF maps were segmented semiautomatically. The infarct core volume, SWI penumbra volume (SPV) and pCASL penumbra volume were computed and used to calculate mismatch ratios MRSWIADC and MRCBFADC . The Dice coefficient between the SWI penumbra ROI and ASL penumbra ROI was 0.96 ± 0.07. MRSWIADC correlated well (r = 0.90, p < 0.05) with MRCBFADC , which validates the hypothesis of accurate penumbra assessment using the SWI-DWI mismatch ratio. Moreover, a significant association between high SPV and the presence of vessel occlusion in the MR angiogram was observed. Follow-up data showed salvation of penumbra tissue (location and volumes predicted by proposed framework) by treatments. Additionally, functional-outcome analysis revealed 93.3% of patients with MRSWIADC > 1 benefitted from revascularization therapy. Overall, the proposed automated quantitative assessment of penumbra using the SWI-DWI mismatch ratio performs equivalently to the ASL PWI-DWI mismatch ratio. This approach provides an alternative to the perfusion sequence required for penumbra assessment, which can reduce scan time by 17% for the protocol without a perfusion sequence.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Artérias Cerebrais/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , AVC Isquêmico/diagnóstico por imagem , Perfusão , Marcadores de Spin , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade
3.
Antonie Van Leeuwenhoek ; 113(7): 889-905, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32152804

RESUMO

Intensification of sodic soil due to increasing pH is an emerging environmental issue. The present study aimed to isolate and characterise alkaline stress-tolerant and plant growth-promoting bacterial strains from moderately alkaline soil (pH 8-9), strongly alkaline soil (pH 9-10), and very strongly alkaline soil (> 10). Total 68 bacteria were isolated, and screened for multiple plant growth promoting (PGP) attributes. Out of total, 42 isolates demonstrating at least three plant growth promoting PGP traits selected for further assays. Then out of 42, 15 bacterial isolates were selected based on enhanced maize plant growth under greenhouse experiment, and 16S rRNA gene sequencing revealed Bacillus spp. as a dominant genus. Furthermore, based on improved seed germination percentage and biomass of maize (Zea mays L.) under alkaline stress conditions Alcaligenes sp. NBRI NB2.5, Bacillus sp. NBRI YE1.3, and Bacillus sp. NBRI YN4.4 bacterial strains were selected, and evaluated for growth-promotion and alkaline stress amelioration under greenhouse condition. Amongst the selected 3 plant growth promoting rhizobacterial (PGPR) strains, Bacillus sp. NBRI YN4.4 significantly improved the photosynthetic pigments and soluble sugar content, and decreased proline level in inoculated maize plants as compared to uninoculated control under stress conditions. Moreover, significantly enhanced soil enzymes such as dehydrogenase, alkaline phosphatase and betaglucosidase due to inoculation of Bacillus sp. NBRI YN4.4 in maize plants grown in alkaline soil attributes to its role in improving the soil health. Therefore, alkaline stress-tolerant PGPR NBRI YN4.4 can be useful for developing strategies for the reclamation of saline/sodic soils and improving the plant growth and soil health in sustainable manner.


Assuntos
Alcaligenes/fisiologia , Bacillus/fisiologia , Desenvolvimento Vegetal , Zea mays/microbiologia , Aclimatação , Alcaligenes/genética , Alcaligenes/isolamento & purificação , Bacillus/genética , Bacillus/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Biomassa , Concentração de Íons de Hidrogênio , Raízes de Plantas/microbiologia , RNA Ribossômico 16S , Rizosfera , Salinidade , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento
4.
Plant Physiol Biochem ; 150: 1-14, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32097873

RESUMO

Plant growth-promoting rhizobacteria (PGPR) improve plant health under various biotic and abiotic stresses. However, the underlying mechanisms of the protective effects of PGPR in deficit water stress (WS) remain less explored. This study aimed to characterize the role of Ochrobactrum sp. NBRISH6 inoculation on maize (Zea mays "Maharaja") under WS conditions using multiple approaches such as physiological, anatomical, metabolic, and molecular. The effect of NBRISH6 inoculation using maize as a host plant was characterized under greenhouse conditions in deficit water stress. Results from this study demonstrated that NBRISH6 significantly lowered the expression of genes involved in the abscisic acid cycle, deficit water stress-response, osmotic stress, and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and polyphenol oxidase). Phytohormones, i.e. indole acetic acid (IAA) and salicylic acid (SA) levels, intercellular CO2 concentration, metabolites such as simple sugars, amino acids, aliphatic hydrocarbons, and the number of shrunken pith cells modulated in maize roots inoculated with NBRISH6. The NBRISH6 inoculation also improved the plant vegetative properties (root length, 33.80%; shoot length, 20.68%; root dry weight, 39.21%; shoot dry weight, 61.95%), shoot nutrients, xylem cells, root hairs, vapor pressure deficit (75%), intrinsic water-use efficiency (41.67%), photosynthesis rate (83.33%), and total chlorophyll (16.15%) as compared to the respective stress controls. This study provides valuable insights into mechanistic functions of PGPR in WS amelioration and promoting plant physiological response.


Assuntos
Secas , Homeostase , Ochrobactrum , Estresse Fisiológico , Zea mays , Ochrobactrum/metabolismo , Oxirredutases/metabolismo , Raízes de Plantas/microbiologia , Estresse Fisiológico/fisiologia , Zea mays/microbiologia , Zea mays/fisiologia
5.
Ecotoxicol Environ Saf ; 170: 267-277, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529922

RESUMO

The study represents a microbial method for reducing heavy metal stress in terrestrial environment. Two rhizobacterial strains Pantoea agglomerance (PC1) and Pseudomonas aeruginosa (SA) having the ability to tolerate Cd2+ and Pb2+ ions stress, were employed in this study. The growth promotion and survival tactics of the strains under metal stress were explored through kinetic growth model using logistic equation, Luedeking-Piret model and Box Behnken design. Study also involves the interaction of strains with Zea mays L. under Cd2+ and Pb2+ ions stress. Results revealed that both strains have the potential to tolerate 500 mg L-1 of Cd2+ and Pb2+, ions and maintained the plant growth promoting traits. The Luedeking-Piret model estimated the maximum value of IAA on biomass growth (YP/X) 5.377 µg g-1 and 10.3 µg g-1 under Cd2+ ions, while 7.742 µg g-1 and 18.071 µg g-1 under Pb2+ ions stress for strains SA and PC1, respectively. Further, phosphate solubilization activity was optimized with the help of response surface methodology using Box Behnken Design. The optimum solubilization by strain PC1 and SA was achieved at 100 and 150 mg L-1 of Cd2+, and 150 and 200 mg L-1 of Pb2+ ion concentration at the pH range 6.75 and 7.5 respectively. The interactive study with Zea mays L. showed significant increase in seed germination in the presence of Cd2+ and Pb2+ ions thereby proving them as potent plant growth promoters and metal stress reducing biological agents. Hence, the findings of the study suggest that rhizobacterial strains could be a sustainable tool for restoration of metal contaminated sites.


Assuntos
Metais Pesados/toxicidade , Pantoea/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Zea mays/crescimento & desenvolvimento , Biodegradação Ambiental , Biomassa , Germinação/efeitos dos fármacos , Rizoma/microbiologia , Zea mays/microbiologia
6.
Microbiol Res ; 205: 25-34, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942841

RESUMO

A comprehensive survey for 09 agro-climatic zones of Uttar Pradesh, India was conducted to isolate and characterize salt tolerant 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase possessing plant growth promoting (PGP) rhizobacteria for salt stress amelioration in rice. Here, we have isolated 1125 bacteria having the ability to tolerate 1M NaCl and out of those, 560 were screened for utilizing ACC as sole nitrogen source. 560 isolates were subjected for bacteria coated seed germination assay under 100mM salt (NaCl) stress resulting to 77 isolates which were further evaluated for seed germination assay, PGP and abiotic stress tolerance ability in vitro. This evaluation revealed 15 potent rhizobacteria representing each agro-climatic zone and salt stress mitigation in vitro. In particular, the biomass obtained for bacteria coated rice seedlings were corroborated with the performance of isolates exhibiting maximum average indole acetic acid (IAA) production respective to the agro-climatic zone. Surprisingly based on 16S rRNA, much of the propitious isolates belonged to same specific epithet exhibited variedly in their characteristics. Overall, Bacillus spp. was explored as dominant genera in toto with highest distribution in Western Plain zone followed by Central zone. Therefore, this study provides a counter-intuitive perspective of selection of native microflora for their multifarious PGP and abiotic stress tolerance abilities based on the agro-climatic zones to empower the establishment and development of more suitable inoculants for their application in agriculture under local stress environments.


Assuntos
Bactérias/enzimologia , Carbono-Carbono Liases/metabolismo , Raízes de Plantas/microbiologia , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Biomassa , DNA Bacteriano/genética , Meio Ambiente , Mapeamento Geográfico , Germinação , Concentração de Íons de Hidrogênio , Índia , Ácidos Indolacéticos/metabolismo , Oryza/microbiologia , Oryza/fisiologia , Fosfatos/química , Filogenia , Desenvolvimento Vegetal , RNA Ribossômico 16S/genética , Salinidade , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Análise de Sequência , Sideróforos/metabolismo , Solo/química , Microbiologia do Solo
7.
Antonie Van Leeuwenhoek ; 110(2): 253-270, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27853952

RESUMO

Soil bacteria may have properties of plant growth promotion but not be sufficiently beneficial for plants under stress conditions. This challenge has led researchers to extend their searches into extreme environments for potential soil bacteria with multiple plant beneficial traits as well as abiotic stress tolerance abilities. In the current study, an attempt was made to evaluate soil bacteria from an extreme environment, volcano soils, based on plant growth promoting and abiotic stress mitigating characteristics. The screening led to the isolation of eight (NBRISH4, NBRISH6, NBRISH10, NBRISH11, NBRISH13, NBRISH14, NBRISH16 and NBRISH26) bacterial isolates capable of withstanding stresses, namely temperature (up to 45 °C), salt (up to 2 M NaCl) and drought (up to 60% Poly Ethylene Glycol 6000) in vitro. Further, the selected isolates were notable for their in vitro temporal performance with regards to survival (in terms of colony count), phosphate solubilisation, biofilm formation, auxin, alginate and exo-polysaccharide production abilities under abiotic stresses i.e. 40 °C temperature; 500 mM NaCl salt and drought (PEG) conditions. In vivo seed treatments of individual selected bacteria to maize plants resulted into significant enhancement in root and shoot length, root and shoot fresh and dry weight and number of leaves per plant. Overall, the plant growth promoting and abiotic stress tolerance ability was most evident for bacterial isolate NBRISH6 which was identified as an Ochrobactrum sp. using 16S rRNA based phylogenetic analysis.


Assuntos
Ochrobactrum/classificação , Ochrobactrum/genética , Pseudomonas/classificação , Pseudomonas/genética , Microbiologia do Solo , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...