Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895329

RESUMO

Tau aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. There are disease-causing variants of the tau-encoding gene, MAPT, and the presence of tau aggregates is highly correlated with disease progression. However, the molecular mechanisms linking pathological tau to neuronal dysfunction are not well understood due to our incomplete understanding of the normal functions of tau in development and aging and how these processes change in the context of causal disease variants of tau. To address these questions in an unbiased manner, we conducted multi-omic characterization of iPSC-derived neurons harboring the MAPT V337M mutation. RNA-seq and phosphoproteomics revealed that both V337M tau and tau knockdown consistently perturbed levels of transcripts and phosphorylation of proteins related to axonogenesis or axon morphology. Surprisingly, we found that neurons with V337M tau had much lower tau phosphorylation than neurons with WT tau. We conducted functional genomics screens to uncover regulators of tau phosphorylation in neurons and found that factors involved in axonogenesis modified tau phosphorylation in both MAPT WT and MAPT V337M neurons. Intriguingly, the p38 MAPK pathway specifically modified tau phosphorylation in MAPT V337M neurons. We propose that V337M tau might perturb axon morphology pathways and tau hypophosphorylation via a "loss of function" mechanism, which could contribute to previously reported cognitive changes in preclinical MAPT gene carriers.

2.
Nat Cell Biol ; 24(7): 1064-1076, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35787684

RESUMO

The pancreas and liver arise from a common pool of progenitors. However, the underlying mechanisms that drive their lineage diversification from the foregut endoderm are not fully understood. To tackle this question, we undertook a multifactorial approach that integrated human pluripotent-stem-cell-guided differentiation, genome-scale CRISPR-Cas9 screening, single-cell analysis, genomics and proteomics. We discovered that HHEX, a transcription factor (TF) widely recognized as a key regulator of liver development, acts as a gatekeeper of pancreatic lineage specification. HHEX deletion impaired pancreatic commitment and unleashed an unexpected degree of cellular plasticity towards the liver and duodenum fates. Mechanistically, HHEX cooperates with the pioneer TFs FOXA1, FOXA2 and GATA4, shared by both pancreas and liver differentiation programmes, to promote pancreas commitment, and this cooperation restrains the shared TFs from activating alternative lineages. These findings provide a generalizable model for how gatekeeper TFs like HHEX orchestrate lineage commitment and plasticity restriction in broad developmental contexts.


Assuntos
Endoderma , Pâncreas , Diferenciação Celular/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Pâncreas/metabolismo , Fatores de Transcrição
3.
Cell Rep ; 37(10): 110095, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879277

RESUMO

Changes in DNA methylation are associated with normal cardiogenesis, whereas altered methylation patterns can occur in congenital heart disease. Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA demethylation. Here, we characterize stage-specific methylation dynamics and the function of TETs during human cardiomyocyte differentiation. Human embryonic stem cells (hESCs) in which all three TET genes are inactivated fail to generate cardiomyocytes (CMs), with altered mesoderm patterning and defective cardiac progenitor specification. Genome-wide methylation analysis shows TET knockout causes promoter hypermethylation of genes encoding WNT inhibitors, leading to hyperactivated WNT signaling and defects in cardiac mesoderm patterning. TET activity is also needed to maintain hypomethylated status and expression of NKX2-5 for subsequent cardiac progenitor specification. Finally, loss of TETs causes a set of cardiac structural genes to fail to be demethylated at the cardiac progenitor stage. Our data demonstrate key roles for TET proteins in controlling methylation dynamics at sequential steps during human cardiac development.


Assuntos
Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Epigênese Genética , Células-Tronco Embrionárias Humanas/enzimologia , Oxigenases de Função Mista/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxigenases de Função Mista/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Troponina I/genética , Troponina I/metabolismo , Via de Sinalização Wnt/genética
4.
Science ; 372(6538)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33833093

RESUMO

DNA methylation is essential to mammalian development, and dysregulation can cause serious pathological conditions. Key enzymes responsible for deposition and removal of DNA methylation are known, but how they cooperate to regulate the methylation landscape remains a central question. Using a knockin DNA methylation reporter, we performed a genome-wide CRISPR-Cas9 screen in human embryonic stem cells to discover DNA methylation regulators. The top screen hit was an uncharacterized gene, QSER1, which proved to be a key guardian of bivalent promoters and poised enhancers of developmental genes, especially those residing in DNA methylation valleys (or canyons). We further demonstrate genetic and biochemical interactions of QSER1 and TET1, supporting their cooperation to safeguard transcriptional and developmental programs from DNMT3-mediated de novo methylation.


Assuntos
Metilação de DNA , DNA/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Sistemas CRISPR-Cas , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Genoma Humano , Humanos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transcrição Gênica , DNA Metiltransferase 3B
5.
Nat Genet ; 51(6): 999-1010, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110351

RESUMO

Human embryonic stem cells (ESCs) and human induced pluripotent stem cells hold great promise for cell-based therapies and drug discovery. However, homogeneous differentiation remains a major challenge, highlighting the need for understanding developmental mechanisms. We performed genome-scale CRISPR screens to uncover regulators of definitive endoderm (DE) differentiation, which unexpectedly uncovered five Jun N-terminal kinase (JNK)-JUN family genes as key barriers of DE differentiation. The JNK-JUN pathway does not act through directly inhibiting the DE enhancers. Instead, JUN co-occupies ESC enhancers with OCT4, NANOG, SMAD2 and SMAD3, and specifically inhibits the exit from the pluripotent state by impeding the decommissioning of ESC enhancers and inhibiting the reconfiguration of SMAD2 and SMAD3 chromatin binding from ESC to DE enhancers. Therefore, the JNK-JUN pathway safeguards pluripotency from precocious DE differentiation. Direct pharmacological inhibition of JNK significantly improves the efficiencies of generating DE and DE-derived pancreatic and lung progenitor cells, highlighting the potential of harnessing the knowledge from developmental studies for regenerative medicine.


Assuntos
Diferenciação Celular/genética , Endoderma/embriologia , Endoderma/metabolismo , Genoma , Genômica , Sistema de Sinalização das MAP Quinases , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Expressão Gênica , Técnicas de Inativação de Genes , Genes Reporter , Genômica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Reprodutibilidade dos Testes , Proteínas Smad
6.
Nature ; 510(7503): 115-20, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24899310

RESUMO

The mir-34/449 family consists of six homologous miRNAs at three genomic loci. Redundancy of miR-34/449 miRNAs and their dominant expression in multiciliated epithelia suggest a functional significance in ciliogenesis. Here we report that mice deficient for all miR-34/449 miRNAs exhibited postnatal mortality, infertility and strong respiratory dysfunction caused by defective mucociliary clearance. In both mouse and Xenopus, miR-34/449-deficient multiciliated cells (MCCs) exhibited a significant decrease in cilia length and number, due to defective basal body maturation and apical docking. The effect of miR-34/449 on ciliogenesis was mediated, at least in part, by post-transcriptional repression of Cp110, a centriolar protein suppressing cilia assembly. Consistent with this, cp110 knockdown in miR-34/449-deficient MCCs restored ciliogenesis by rescuing basal body maturation and docking. Altogether, our findings elucidate conserved cellular and molecular mechanisms through which miR-34/449 regulate motile ciliogenesis.


Assuntos
Proteínas de Ligação a Calmodulina/deficiência , Proteínas de Ligação a Calmodulina/genética , Cílios/genética , Cílios/fisiologia , MicroRNAs/genética , Morfogênese/genética , Animais , Animais Recém-Nascidos , Corpos Basais/metabolismo , Corpos Basais/patologia , Corpos Basais/ultraestrutura , Sequência de Bases , Proteínas de Ligação a Calmodulina/metabolismo , Centríolos/metabolismo , Cílios/patologia , Cílios/ultraestrutura , Epiderme/embriologia , Epiderme/patologia , Feminino , Infertilidade/genética , Infertilidade/fisiopatologia , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia , Síndrome de Kartagener/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Fenótipo , Sistema Respiratório/patologia , Sistema Respiratório/fisiopatologia , Análise de Sobrevida , Xenopus laevis/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...