Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 101(2): 022303, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18764175

RESUMO

We present a measurement of the spin-dependent cross sections for the 3He over -->(e over -->,e')X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1< or =Q2< or =0.9 GeV2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region.

2.
Phys Rev Lett ; 95(14): 142002, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-16241646

RESUMO

We present the first measurement of the Q2 dependence of the neutron spin structure function g2(n) at five kinematic points covering 0.57 (GeV/c)2 < or = Q2 < or = 1.34 (GeV/c)2 at x approximately = 0.2. Though the naive quark-parton model predicts g2 = 0, nonzero values occur in more realistic models of the nucleon which include quark-gluon correlations, finite quark masses, or orbital angular momentum. When scattering from a noninteracting quark, g2(n) can be predicted using next-to-leading order fits to world data for g1(n). Deviations from this prediction provide an opportunity to examine QCD dynamics in nucleon structure. Our results show a positive deviation from this prediction at lower Q2, indicating that contributions such as quark-gluon interactions may be important. Precision data obtained for g1(n) are consistent with next-to-leading order fits to world data.

3.
Phys Rev Lett ; 94(19): 192302, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16090165

RESUMO

We have studied the quasielastic 3He(e,e(')p)2H reaction in perpendicular coplanar kinematics, with the energy and the momentum transferred by the electron fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,e(')p)2H cross section was measured for missing momenta up to 1000 MeV/c, while the A(TL) asymmetry was extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150 MeV/c, the cross section is described by variational calculations using modern 3He wave functions. For missing momenta from 150 to 750 MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c, the experimental cross section is more than an order of magnitude larger than predicted by available theories. The A(TL) asymmetry displays characteristic features of broken factorization with a structure that is similar to that generated by available models.

4.
Phys Rev Lett ; 94(8): 082305, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15783882

RESUMO

Results of the Jefferson Lab Hall A quasielastic 3He(e,e'p)pn measurements are presented. These measurements were performed at fixed transferred momentum and energy, q=1502 MeV/c and omega=840 MeV, respectively, for missing momenta p(m) up to 1 GeV/c and missing energies in the continuum region, up to pion threshold; this kinematic coverage is much more extensive than that of any previous experiment. The cross section data are presented along with the effective momentum density distribution and compared to theoretical models.

5.
Phys Rev Lett ; 93(15): 152301, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15524867

RESUMO

The generalized forward spin polarizabilities gamma(0) and delta(LT) of the neutron have been extracted for the first time in a Q2 range from 0.1 to 0.9 GeV2. Since gamma(0) is sensitive to nucleon resonances and delta(LT) is insensitive to the Delta resonance, it is expected that the pair of forward spin polarizabilities should provide benchmark tests of the current understanding of the chiral dynamics of QCD. The new results on delta(LT) show significant disagreement with chiral perturbation theory calculations, while the data for gamma(0) at low Q2 are in good agreement with a next-to-leading-order relativistic baryon chiral perturbation theory calculation. The data show good agreement with the phenomenological MAID model.

6.
Phys Rev Lett ; 92(2): 022301, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14753931

RESUMO

We have measured the spin structure functions g(1) and g(2) of 3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.058 GeV off a polarized 3He target at a 15.5 degrees scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q2 evolution of Gamma(1)(Q2)= integral (1)(0)g(1)(x,Q2)dx, Gamma(2)(Q2)= integral (1)(0)g(2)(x,Q2)dx, and d(2)(Q2)= integral (1)(0)x(2)[2g(1)(x,Q2)+3g(2)(x,Q2)]dx for the neutron in the range 0.1< or =Q2< or =0.9 GeV2 with good precision. Gamma(1)(Q2) displays a smooth variation from high to low Q2. The Burkhardt-Cottingham sum rule holds within uncertainties and d(2) is nonzero over the measured range.

7.
Phys Rev Lett ; 89(24): 242301, 2002 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-12484938

RESUMO

We present data on the inclusive scattering of polarized electrons from a polarized 3He target at energies from 0.862 to 5.06 GeV, obtained at a scattering angle of 15.5 degrees. Our data include measurements from the quasielastic peak, through the nucleon resonance region, and beyond, and were used to determine the virtual photon cross-section difference sigma(1/2)-sigma(3/2). We extract the extended Gerasimov-Drell-Hearn integral for the neutron in the range of four-momentum transfer squared Q2 of 0.1-0.9 GeV2.

8.
Phys Rev Lett ; 87(24): 242501, 2001 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-11736498

RESUMO

We present the first precision measurement of the spin-dependent asymmetry in the threshold region of 3He(e,e') at Q2 values of 0.1 and 0.2 (GeV/c)2. The agreement between the data and nonrelativistic Faddeev calculations which include both final-state interactions and meson-exchange current effects is very good at Q2 = 0.1 (GeV/c)2, while a small discrepancy at Q2 = 0.2 (GeV/c)2 is observed.

10.
Phys Rev Lett ; 85(14): 2900-4, 2000 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-11005963

RESUMO

We have measured the transverse asymmetry A(T') in 3He(e,e(')) quasielastic scattering in Hall A at Jefferson Laboratory with high precision for Q2 values from 0.1 to 0.6 (GeV/c)(2). The neutron magnetic form factor G(n)(M) was extracted based on Faddeev calculations for Q2 = 0.1 and 0.2 (GeV/c)(2) with an experimental uncertainty of less than 2%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...