Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 119(51): 12781-9, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26608471

RESUMO

Dicarbonyls in the atmosphere mainly arise from secondary sources as reaction products in the degradation of a large number of volatile organic compounds (VOC). Because of their sensitivity to solar radiation, photodissociation of dicarbonyls can dominate the fate of these VOC and impact the atmospheric radical budget. The photolysis of 2,3-pentanedione (PTD) has been investigated for the first time as a function of pressure in a static reactor equipped with continuous wave cavity ring-down spectroscopy to measure the HO2 radical photostationary concentrations along with stable species. We showed that (i) Stern-Volmer plots are consistent with low OH-radical formation yields in RCO + O2 reactions, (ii) the decrease of the photodissociation rate due to pressure increase from 26 to 1000 mbar is of about 30%, (iii) similarly to other dicarbonyls, the Stern-Volmer analysis shows a curvature at the lower pressure investigated, which may be assigned to the existence of excited singlet and triplet PTD states, (iv) PTD photolysis at 66 mbar leads to CO2, CH2O and CO with yields of (1.16 ± 0.04), (0.33 ± 0.02) and (0.070 ± 0.005), respectively, with CH2O yield independent of pressure up to 132 mbar and CO yield in agreement with that obtained at atmospheric pressure by Bouzidi et al. (2014), and (v) the PTD photolysis mechanism remains unchanged between atmospheric pressure and 66 mbar. As a part of this work, the O2 broadening coefficient for the absorption line of HO2 radicals at 6638.21 cm(-1) has been determined (γO2 = 0.0289 cm(-1) atm(-1)).

2.
J Am Chem Soc ; 136(47): 16689-94, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25381864

RESUMO

For the first time quantitative measurements of the hydroperoxyl radical (HO2) in a jet-stirred reactor were performed thanks to a new experimental setup involving fast sampling and near-infrared cavity ring-down spectroscopy at low pressure. The experiments were performed at atmospheric pressure and over a range of temperatures (550-900 K) with n-butane, the simplest hydrocarbon fuel exhibiting cool flame oxidation chemistry which represents a key process for the auto-ignition in internal combustion engines. The same technique was also used to measure H2O2, H2O, CH2O, and C2H4 under the same conditions. This new setup brings new scientific horizons for characterizing complex reactive systems at elevated temperatures. Measuring HO2 formation from hydrocarbon oxidation is extremely important in determining the propensity of a fuel to follow chain-termination pathways from R + O2 compared to chain branching (leading to OH), helping to constrain and better validate detailed chemical kinetics models.

3.
J Phys Chem A ; 115(33): 9160-8, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21786774

RESUMO

The kinetics of the overall reaction between OH radicals and 2,3-pentanedione (1) were studied using both direct and relative kinetic methods at laboratory temperature. The low pressure fast discharge flow experiments coupled with resonance fluorescence detection of OH provided the direct rate coefficient of (2.25 ± 0.44) × 10(-12) cm(3) molecule(-1) s(-1). The relative-rate experiments were carried out both in a collapsible Teflon chamber and a Pyrex reactor in two laboratories using different reference reactions to provide the rate coefficients of 1.95 ± 0.27, 1.95 ± 0.34, and 2.06 ± 0.34, all given in 10(-12) cm(3) molecule(-1) s(-1). The recommended value is the nonweighted average of the four determinations: k(1) (300 K) = (2.09 ± 0.38) × 10(-12) cm(3) molecule(-1) s(-1), given with 2σ accuracy. Absorption cross sections for 2,3-pentanedione were determined: the spectrum is characterized by two wide absorption bands between 220 and 450 nm. Pulsed laser photolysis at 351 nm was used and the depletion of 2,3-pentanedione (2) was measured by GC to determine the photolysis quantum yield of Φ(2) = 0.11 ± 0.02(2σ) at 300 K and 1000 mbar synthetic air. An upper limit was estimated for the effective quantum yield of 2,3-pentanedione applying fluorescent lamps with peak wavelength of 312 nm. Relationships between molecular structure and OH reactivity, as well as the atmospheric fate of 2,3-pentanedione, have been discussed.


Assuntos
Atmosfera/química , Radical Hidroxila/química , Pentanonas/química , Absorção , Cinética , Lasers , Estrutura Molecular , Fotólise/efeitos da radiação , Pressão , Teoria Quântica , Espectrofotometria Ultravioleta , Temperatura , Termodinâmica , Raios Ultravioleta
4.
Chemosphere ; 75(6): 714-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19251300

RESUMO

We studied the possibility to re-use an aqueous solution of methyl-beta-cyclodextrin (bpmCD) in order to decontaminate a soil polluted by phenanthrene and pyrene. The loss of bpmCD in the soil was insignificant. In order to eliminate polycylic aromatic hydrocarbons (PAHs) from the contaminated aqueous solution, on one hand we tested their photodegradation using TiO(2) suspensions. But it was inefficient, because of the stabilisation of PAHs within the cavity of bpmCD. On the other hand, we removed PAHs by liquid-liquid extraction with colza oil. This allowed the regeneration of cyclodextrins, by concentrating the pollutants in the organic phase with a small loss of carrier. Contaminated soils were almost completely de-polluted after 2d of re-circulation, using a 10mM solution of bpmCD. To reduce the amount of bpmCD loss in the oil phase, we set the fraction of colza oil low, by using a micro-emulsion or by impregnating an organic membrane with the oil. We found this last possibility more interesting.


Assuntos
Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação , Soluções/química , beta-Ciclodextrinas/química , Recuperação e Remediação Ambiental/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...