Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biosyst ; 4(11): e2000081, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33089652

RESUMO

The production of large scaffold-free tissues is a key challenge in regenerative medicine. Nowadays, temperature-responsive polymers allow intact tissue harvesting without needing proteolytic enzymes. This method is limited to tissue culture plastic with limited upscaling capacity and plain process control. Here, a thermoresponsive hollow fiber membrane bioreactor is presented to produce large scaffold-free tissues. Intact tissues, rich in cell-to-cell connections and ECM, are harvested from a poly(N-vinylcaprolactam) microgel functionalized poly(ether sulfone)/poly(vinylpyrrolidone) hollow fiber membrane by a temperature shift. The harvested 3D tissues adhere in successive cultivation and exhibit high vitality for several days. The facile adsorptive coating waives the need for extensive surface treatment. The research is anticipated to be a starting point for upscaling the production of interconnected tissues enabling new opportunities in regenerative medicine, large-scale drug screening on physiological relevant tissues, and potentially opening new chances in cell-based therapies.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Membranas Artificiais , Engenharia Tecidual/métodos , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Camundongos , Temperatura
2.
Biosens Bioelectron ; 165: 112345, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32513645

RESUMO

We describe an impedance-based method for cell barrier integrity testing. A four-electrode electrical impedance spectroscopy (EIS) setup can be realized by simply connecting a commercial chopstick-like electrode (STX-1) to a potentiostat allowing monitoring cell barriers cultivated in transwell inserts. Subsequent electric circuit modeling of the electrical impedance results the capacitive properties of the barrier next to the well-known transepithelial electrical resistance (TEER). The versatility of the new method was analyzed by the EIS analysis of a Caco-2 monolayer in response to (a) different membrane coating materials, (b) two different permeability enhancers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and saponin, and (c) sonoporation. For the different membrane coating materials, the TEERs of the standard and new protocol coincide and increase during cultivation, while the capacitance shows a distinct maximum for three different surface materials (no coating, Matrigel®, and collagen I). The permeability enhancers cause a decline in the TEER value, but only saponin alters the capacitance of the cell layer by two orders of magnitude. Hence, cell layer capacitance and TEER represent two independent properties characterizing the monolayer. The use of commercial chopstick-like electrodes to access the impedance of a barrier cultivated in transwell inserts enables remarkable insight into the behavior of the cellular barrier with no extra work for the researcher. This simple method could evolve into a standard protocol used in cell barrier research.


Assuntos
Técnicas Biossensoriais , Espectroscopia Dielétrica , Células CACO-2 , Impedância Elétrica , Células Epiteliais , Humanos
3.
Artif Organs ; 44(10): E419-E433, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32320079

RESUMO

Endothelialized oxygenator devices (EndOxy) with a physiological, nonthrombogenic, and anti-inflammatory surface offer the potential to overcome current shortcomings of conventional extracorporeal membrane oxygenation such as complications like thromboembolism and bleeding that deteriorate adequate long-term hemocompatibility. The approach of endothelialization of gas exchange membranes, and thus the formation of a nonthrombogenic and anti-inflammatory surface, is promising. In this study, we investigated the mid-term shear stress resistance as well as gas transfer rates and cell densities of endothelial cells seeded on RGD-conjugated polydimethylsiloxane (RGD-PDMS) gas exchange membranes under dynamic conditions. Human umbilical vein endothelial cells were seeded on RGD-PDMS and exposed to defined shear stresses in a microfluidic bioreactor. Endothelial cell morphology was assessed by bright field microscopy and immunocytochemistry. Furthermore, gas transfer measurement of blank, RGD-conjugated, and endothelialized PDMS oxygenator membranes was performed. RGD-PDMS gas exchange membranes proved suitable for the dynamic culture of endothelial cells for up to 21 days at a wall shear stress of 2.9 dyn/cm2 . Furthermore, the cells resisted increased wall shear stresses up to 8.6 dyn/cm2 after a previous dynamic preculture of each one hour at 2.9 dyn/cm2 and 5.7 dyn/cm2 . Also, after a longer dynamic preculture of three days at 2.9 dyn/cm2 and one hour at 5.7 dyn/cm2 , increased wall shear stresses of 8.6 dyn/cm2 were tolerated by the cells and cell integrity could be remained. Gas transfer (GT) tests revealed that neither RGD conjugation nor endothelialization of RGD-PDMS significantly decrease the gas transfer rates of the membranes during short-term trials. Gas transfer rates are stable for at least 72 hours of dynamic cultivation of endothelial cells. Immunocytochemistry showed that the cell layer stained positive for typical endothelial cell markers CD31 and von Willebrand factor (VWF) after all trials. Cell density of EC on RGD-PDMS increased between 3 and 21 days of dynamic culture. In this study, we show the suitability of RGD-PDMS membranes for flow resistant endothelialization of gas-permeable membranes, demonstrating the feasibility of this approach for a biohybrid lung.


Assuntos
Dimetilpolisiloxanos/química , Oxigenação por Membrana Extracorpórea/instrumentação , Oligopeptídeos/química , Oxigenadores de Membrana , Reatores Biológicos , Adesão Celular , Oxigenação por Membrana Extracorpórea/efeitos adversos , Estudos de Viabilidade , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Oxigênio/metabolismo , Estresse Mecânico
4.
Ann Biomed Eng ; 48(2): 747-756, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31754901

RESUMO

In the concept of a biohybrid lung, endothelial cells seeded on gas exchange membranes form a non-thrombogenic an anti-inflammatory surface to overcome the lacking hemocompatibility of today's oxygenators during extracorporeal membrane oxygenation. To evaluate this concept, the long-term stability and gas exchange performance of endothelialized RGD-conjugated polydimethylsiloxane (RGD-PDMS) membranes was evaluated. Human umbilical vein endothelial cells (ECs) were cultured on RGD-PDMS in a model system under physiological wall shear stress (WSS) of 0.5 Pa for up to 33 days. Gas exchange performance was tested with three biological replicates under elevated WSS of 2.5 Pa using porcine blood adjusted to venous values following ISO 7199 and blood gas analysis. EC morphology was assessed by immunocytochemistry (n = 3). RGD-PDMS promoted endothelialization and stability of endothelialized membranes was shown for at least 33 days and for a maximal WSS of 2.5 Pa. Short-term exposure to porcine blood did not affect EC integrity. The gas transfer tests provided evidence for the oxygenation and decarboxylation of the blood across endothelialized membranes with a decrease of transfer rates over time that needs to be addressed in further studies with larger sample sizes. Our results demonstrate the general suitability of RGD-PDMS for biohybrid lung applications, which might enable long-term support of patients with chronic lung failure in the future.


Assuntos
Oxigenação por Membrana Extracorpórea , Células Endoteliais da Veia Umbilical Humana/metabolismo , Pulmão , Membranas Artificiais , Consumo de Oxigênio , Oxigênio/metabolismo , Dimetilpolisiloxanos , Humanos
5.
Small ; 15(33): e1901356, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31168917

RESUMO

Two-photon vertical-flow lithography is demonstrated for synthesis of complex-shaped polymeric microtubes with a high aspect ratio (>100:1). This unique microfluidic approach provides rigorous control over the morphology and surface topology to generate thin-walled (<1 µm) microtubes with a tunable diameter (1-400 µm) and pore size (1-20 µm). The interplay between fluid-flow control and two-photon lithography presents a generic high-resolution method that will substantially contribute toward the future development of biocompatible scaffolds, stents, needles, nerve guides, membranes, and beyond.


Assuntos
Impressão/métodos , Materiais Biocompatíveis , Fótons , Polímeros , Alicerces Teciduais
6.
Biomed Res Int ; 2017: 5258196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28913354

RESUMO

In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Pulmão/metabolismo , Oxigênio/metabolismo , Troca Gasosa Pulmonar/fisiologia , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fenômenos Fisiológicos Respiratórios
7.
Biotechnol Prog ; 30(6): 1348-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25202924

RESUMO

Heterogeneities occur in various bioreactor designs including cell retention devices. Whereas in external devices changing environmental conditions cannot be prevented, cells are retained in their optimal environment in internal devices. Conventional reverse-flow diafiltration utilizes an internal membrane device, but pulsed feeding causes temporal heterogeneities. In this study, the influence of conventional reverse-flow diafiltration on the yeast Hansenula polymorpha is investigated. Alternating 180 s of feeding with 360 s of non-feeding at a dilution rate of 0.2 h(-1) results in an oscillating DOT signal with an amplitude of 60%. Thereby, induced short-term oxygen limitations result in the formation of ethanol and a reduced product concentration of 25%. This effect is enforced at increased dilution rate. To overcome this cyclic problem, sequential operation of three membranes is introduced. Thus, quasi-continuous feeding is achieved reducing the oscillation of the DOT signal to an amplitude of 20% and 40% for a dilution rate of 0.2 h(-1) and 0.5 h(-1) , respectively. Fermentation conditions characterized by complete absence of oxygen limitation and without formation of overflow metabolites could be obtained for dilution rates from 0.1 h(-1) - 0.5 h(-1) . Thus, sequential operation of three membranes minimizes oscillations in the DOT signal providing a nearly homogenous culture over time.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Filtração/instrumentação , Membranas Artificiais , Animais , Células CHO , Sobrevivência Celular , Cricetinae , Cricetulus , Desenho de Equipamento , Teste de Materiais , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...