Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930997

RESUMO

In the development of ultra-deep wells, extremely high temperatures can lead to inefficiency of additives in drilling fluids. Hence, there is a need to prepare additives with a simple preparation process and good effects at ultra-high temperatures to ensure stable drilling fluid performance. In this study, a high temperature resistant filtration loss polymer (LY-2) was prepared using γ-methacryloyloxypropyltrimethoxysilane (KH570), N,N-dimethylallyl ammonium chloride (DMDAAC), sodium p-styrenesulfonate (SSS), and ß-cyclodextrin (ß-CD). The impact of the different monomer ratios on particle size, rheology, and filtration performance was systematically investigated. Infrared spectroscopy afforded the structural features. Thermogravimetric Analysis detected the temperature stability, and scanning electron microscopy characterized the polymer micromorphology. LY-2 was completely decomposed at a temperature above 600 °C. Experiments showed FLAPI of the drilling fluid containing 3% LY-2 aged at 260 °C/16 h was only 5.1 mL, which is 85.4% lower compared to the base fluid. This is attributed to the synergistic effect of the polymer adsorption through chemical action at high temperatures and the blocking effect of carbon nanoparticles on the filter cake released by cyclodextrin carbonization at high temperatures. Comparing LY-2 with commercial filter loss reducers shows that LY-2 has excellent temperature resistance, which exhibited five times higher filtration performance and relatively low cost, making it possible to be applied to ultra-high temperature drilling operations in an industrial scale-up.

2.
Int J Biol Macromol ; 270(Pt 2): 132123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761909

RESUMO

In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.


Assuntos
Hidrogéis , Polissacarídeos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Humanos , Hidrogéis/química , Polissacarídeos/química , Animais , Materiais Biocompatíveis/química
3.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838821

RESUMO

Volatile global oil prices, owing to the scarcity of fossil resources, have impacted the cost of producing petrochemicals. Therefore, there is a need to seek novel, renewable chemicals from biomass feedstocks that have comparable properties to petrochemicals. In this study, synthesis, thermal and mechanical properties, and degradability studies of a novel series of sustainable thiophene-based copolyesters like poly(hexylene 2,5-thiophenedicarboxylate-co-bis(2-hydroxyethoxybenzene) (PTBxHy) were conducted via a controlled melt polymerization method. Fourier-transform infrared (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopy techniques elucidated the degree of randomness and structural properties of copolyesters. Meanwhile, gel permeation chromatography (GPC) analysis showed a high average molecular weight in the range of 67.4-78.7 × 103 g/mol. The glass transition temperature (Tg) was between 69.4 and 105.5 °C, and the melting point between 173.7 and 194.2 °C. The synthesized polymers outperformed poly(ethylene 2,5-thiophenedicarboxylate) (PETF) and behaved similarly to polyethylene terephthalate. The copolyesters exhibited a high tensile strength of 46.4-70.5 MPa and a toughness of more than 600%, superior to their corresponding homopolyesters. The copolyesters, which ranged from 1,4-bis(2-hydroxyethyl)benzene thiophenedicarboxylate (TBB)-enriched to hexylene thiophenedicarboxylate (THH)-enriched, offered significant control over crystallinity, thermal and mechanical properties. Enzymatic hydrolysis of synthetized polymers using porcine pancreatic lipase (PP-L) over a short period resulted in significant weight losses of 9.6, 11.4, 30.2, and 35 wt%, as observed by scanning electron microscopy (SEM), with perforations visible on all surfaces of the films. Thus, thiophene-based polyesters with cyclic aromatic structures similar to terephthalic acid (TPA) show great promise as PET mimics. At the same time, PP-L appears to be a promising biocatalyst for the degradation of bioplastic waste and its recycling via re-synthesis processes.


Assuntos
Lipase , Polímeros , Animais , Suínos , Polimerização , Lipase/metabolismo , Poliésteres/química , Hidrólise
4.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012244

RESUMO

Vanillin, as a promising aromatic aldehyde, possesses worthy structural and bioactive properties useful in the design of novel sustainable polymeric materials. Its versatility and structural similarity to terephthalic acid (TPA) can lead to materials with properties similar to conventional poly(ethylene terephthalate) (PET). In this perspective, a symmetrical dimethylated dialkoxydivanillic diester monomer (DEMV) derived from vanillin was synthesized via a direct-coupling method. Then, a series of poly(ether-ester)s were synthesized via melt-polymerization incorporating mixtures of phenyl/phenyloxy diols (with hydroxyl side-chains in the 1,2-, 1,3- and 1,4-positions) and a cyclic diol, 1,4-cyclohexanedimethanol (CHDM). The polymers obtained had high molecular weights (Mw = 5.3-7.9 × 104 g.mol-1) and polydispersity index (D) values of 1.54-2.88. Thermal analysis showed the polymers are semi-crystalline materials with melting temperatures of 204-240 °C, and tunable glass transition temperatures (Tg) of 98-120 °C. Their 5% decomposition temperature (Td,5%) varied from 430-315 °C, which endows the polymers with a broad processing window, owing to their rigid phenyl rings and trans-CHDM groups. These poly(ether-ester)s displayed remarkable impact strength and satisfactory gas barrier properties, due to the insertion of the cyclic alkyl chain moieties. Ultimately, the synergistic influence of the ester and ether bonds provided better control over the behavior and mechanism of in vitro degradation under passive and enzymatic incubation for 90 days. Regarding the morphology, scanning electron microscopy (SEM) imaging confirmed considerable surface degradation in the polymer matrices of both polymer series, with weight losses reaching up to 35% in enzymatic degradation, which demonstrates the significant influence of ether bonds for biodegradation.


Assuntos
Materiais Biocompatíveis , Éter , Materiais Biocompatíveis/química , Ésteres , Éteres , Polimerização , Polímeros/química
5.
Molecules ; 27(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011561

RESUMO

In this work, the feasibility of replacing petroleum-based poly(ethylene terephthalate) (PET) with fully bio-based copolyesters derived from dimethyl 2,5-thiophenedicarboxylate (DMTD), dimethyl 2,5-dimethoxyterephthalate (DMDMT), and polysaccharide-derived 1,6-hexanediol (HDO) was investigated. A systematic study of structure-property relationship revealed that the properties of these poly(thiophene-aromatic) copolyesters (PHS(20-90)) can be tailored by varying the ratio of diester monomers in the reaction, whereby an increase in DMTD content noticeably shortened the reaction time in the transesterification step due to its higher reactivity as compared with DMDMT. The copolyesters had weight-average molar masses (Mw) between 27,500 and 38,800 g/mol, and dispersity D of 2.0-2.5. The different polarity and stability of heterocyclic DMTD provided an efficient mean to tailor the crystallization ability of the copolyesters, which in turn affected the thermal and mechanical performance. The glass transition temperature (Tg) could be tuned from 70-100 °C, while the tensile strength was in a range of 23-80 MPa. The obtained results confirmed that the co-monomers were successfully inserted into the copolyester chains. As compared with commercial poly(ethylene terephthalate), the copolyesters displayed not only enhanced susceptibility to hydrolysis, but also appreciable biodegradability by lipases, with weight losses of up to 16% by weight after 28 weeks of incubation.


Assuntos
Ácidos/química , Poliésteres/síntese química , Polissacarídeos/química , Tiofenos/síntese química , Técnicas de Química Sintética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Poliésteres/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Tiofenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...