Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Curr Issues Mol Biol ; 46(4): 3278-3293, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38666935

RESUMO

Protein S (PROS1) is a vitamin K-dependent anticoagulant factor, which also acts as an agonist for the TYRO3, AXL, and MERTK (TAM) tyrosine kinase receptors. PROS1 is produced by the endothelium which also expresses TAM receptors, but little is known about its effects on vascular function and permeability. Transwell permeability assays as well as Western blotting and immunostaining analysis were used to monitor the possible effects of PROS1 on both endothelial cell permeability and on the phosphorylation state of specific signaling proteins. We show that human PROS1, at its circulating concentrations, substantially increases both the basal and VEGFA-induced permeability of endothelial cell (EC) monolayers. PROS1 induces p38 MAPK (Mitogen Activated Protein Kinase), Rho/ROCK (Rho-associated protein kinase) pathway activation, and actin filament remodeling, as well as substantial changes in Vascular Endothelial Cadherin (VEC) distribution and its phosphorylation on Ser665 and Tyr685. It also mediates c-Src and PAK-1 (p21-activated kinase 1) phosphorylation on Tyr416 and Ser144, respectively. Exposure of EC to human PROS1 induces VEC internalization as well as its cleavage into a released fragment of 100 kDa and an intracellular fragment of 35 kDa. Using anti-TAM neutralizing antibodies, we demonstrate that PROS1-induced VEC and c-Src phosphorylation are mediated by both the MERTK and TYRO3 receptors but do not involve the AXL receptor. MERTK and TYRO3 receptors are also responsible for mediating PROS1-induced MLC (Myosin Light Chain) phosphorylation on a site targeted by the Rho/ROCK pathway. Our report provides evidence for the activation of the c-Src/VEC and Rho/ROCK/MLC pathways by PROS1 for the first time and points to a new role for PROS1 as an endogenous vascular permeabilizing factor.

2.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829984

RESUMO

Renal ischaemia reperfusion (I/R) triggers a cascade of events including oxidative stress, apoptotic body and microparticle (MP) formation as well as an acute inflammatory process that may contribute to organ failure. Macrophages are recruited to phagocytose cell debris and MPs. The tyrosine kinase receptor MerTK is a major player in the phagocytosis process. Experimental models of renal I/R events are of major importance for identifying I/R key players and for elaborating novel therapeutical approaches. A major aim of our study was to investigate possible involvement of MerTK in renal I/R. We performed our study on both natural mutant rats for MerTK (referred to as RCS) and on wild type rats referred to as WT. I/R was established by of bilateral clamping of the renal pedicles for 30' followed by three days of reperfusion. Plasma samples were analysed for creatinine, aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), kidney injury molecule -1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels and for MPs. Kidney tissue damage and CD68-positive cell requirement were analysed by histochemistry. monocyte chemoattractant protein-1 (MCP-1), myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), and histone 3A (H3A) levels in kidney tissue lysates were analysed by western blotting. The phagocytic activity of blood-isolated monocytes collected from RCS or WT towards annexin-V positive bodies derived from cultured renal cell was assessed by fluorescence-activated single cell sorting (FACS) and confocal microscopy analyses. The renal I/R model for RCS rat described for the first time here paves the way for further investigations of MerTK-dependent events in renal tissue injury and repair mechanisms.


Assuntos
Injúria Renal Aguda/genética , Rim/metabolismo , Traumatismo por Reperfusão/genética , c-Mer Tirosina Quinase/genética , Injúria Renal Aguda/sangue , Injúria Renal Aguda/patologia , Animais , Aspartato Aminotransferases/sangue , Moléculas de Adesão Celular/sangue , Quimiocina CCL2/sangue , Creatinina/sangue , Humanos , Rim/patologia , L-Lactato Desidrogenase/sangue , Lipocalina-2/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo II/sangue , Peroxidase/sangue , Fagocitose/genética , Ratos , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/patologia
3.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513753

RESUMO

Tumor progression begins when cancer cells recruit tumor-associated stromal cells to produce a vascular niche, ultimately resulting in uncontrolled growth, invasion, and metastasis. It is poorly understood, though, how this process might be affected by deletions or mutations in the breast cancer type 1 susceptibility (BRCA1) gene in patients with a lifetime risk of developing breast and/or ovarian cancer. To model the BRCA1-deleted stroma, we first generated induced pluripotent stem cells (iPSCs) from patients carrying a germline deletion of exon 17 of the BRCA1 gene (BRCA1+/- who, based on their family histories, were at a high risk for cancer. Using peripheral blood mononuclear cells (PBMCs) of these two affected family members and two normal (BRCA1+/+) individuals, we established a number of iPSC clones via non-integrating Sendai virus-based delivery of the four OCT4, SOX2, KLF4, and c-MYC factors. Induced mesenchymal stem cells (iMSCs) were generated and used as normal and pathological stromal cells. In transcriptome analyses, BRCA1+/- iMSCs exhibited a unique pro-angiogenic signature: compared to non-mutated iMSCs, they expressed high levels of HIF-1α, angiogenic factors belonging to the VEGF, PDGF, and ANGPT subfamilies showing high angiogenic potential. This was confirmed in vitro through the increased capacity to generate tube-like structures compared to BRCA1+/+ iMSCs and in vivo by a matrigel plug angiogenesis assay where the BRCA1+/- iMSCs promoted the development of an extended and organized vessel network. We also reported a highly increased migration capacity of BRCA1+/- iMSCs through an in vitro wound healing assay that correlated with the upregulation of the periostin (POSTN). Finally, we assessed the ability of both iMSCs to facilitate the engraftment of murine breast cancer cells using a xenogenic 4T1 transplant model. The co-injection of BRCA1+/- iMSCs and 4T1 breast cancer cells into mouse mammary fat pads gave rise to highly aggressive tumor growth (2-fold increase in tumor volume compared to 4T1 alone, p = 0.01283) and a higher prevalence of spontaneous metastatic spread to the lungs. Here, we report for the first time a major effect of BRCA1 haploinsufficiency on tumor-associated stroma in the context of BRCA1-associated cancers. The unique iMSC model used here was generated using patient-specific iPSCs, which opens new therapeutic avenues for the prevention and personalized treatment of BRCA1-associated hereditary breast cancer.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Neoplasias Pulmonares/genética , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/genética , Animais , Proteína BRCA1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/congênito , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Haploinsuficiência , Humanos , Fator 4 Semelhante a Kruppel , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Interferente Pequeno , Transcriptoma/genética , Microambiente Tumoral/genética , Cicatrização/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Biochem Biophys Res Commun ; 498(4): 715-722, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29550484

RESUMO

Manganese Superoxide dismutase 2 (SOD2) plays a crucial role in antioxidant defense but there are no data suggesting its role in genetic instability in CML. We evaluated the effects of SOD2 silencing in human UT7 cell line expressing either non-mutated or T315I-mutated BCR-ABL. Array-CGH experiments detected in BCR-ABL-expressing cells silenced for SOD2 a major genetic instability within several chromosomal loci, especially in regions carrying the glypican family (duplicated) and ß-defensin genes (deleted). In a large cohort of patients with chronic myeloid leukemia (CML), a significant decrease of SOD2 mRNA was observed. This reduction appeared inversely correlated with leukocytosis and Sokal score, high-risk patients showing lower SOD2 levels. The analysis of anti-oxidant gene expression analysis revealed a specific down-regulation of the expression of PRDX2 in UT7-BCR-ABL and UT7-T315I cells silenced for SOD2 expression. Gene set enrichment analysis performed between the two SOD2-dependent classes of CML patients revealed a significant enrichment of Reactive Oxygen Species (ROS) Pathway. Our data provide the first evidence for a link between SOD2 expression and genetic instability in CML. Consequently, SOD2 mRNA levels should be analyzed in prospective studies as patients with low SOD2 expression could be more prone to develop a mutator phenotype under TKI therapies.


Assuntos
Proteínas de Fusão bcr-abl/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Superóxido Dismutase/genética , Linhagem Celular Tumoral , Estudos de Coortes , Inativação Gênica , Humanos , Mutação , Peroxirredoxinas/genética , Mutação Puntual
5.
Exp Hematol ; 43(9): 775-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26118501

RESUMO

BCR-ABL induces an intrinsic genetic instability in chronic myeloid leukemia (CML). The protein breast cancer 1, early onset (BRCA1)-associated protein 1 (BAP1) is a deubiquitinase interacting with the DNA repair regulator BRCA1 and is frequently inactivated in many cancers. Here, we report that BAP1 mRNA and protein levels are downregulated in a BCR-ABL1-expressing hematopoietic cell line (UT-7/11). A decrease of BAP1 transcripts is also observed in newly diagnosed CML patients. Moreover, BAP1 protein levels are low or undetectable in CD34(+) cells from CML patients at diagnosis as compared with CD34(+) cells from normal donors. In addition, BRCA1 protein level is reduced in BCR-ABL1-expressing UT-7/11 cells. Finally, the enforced expression of BAP1 is associated with BRCA1 protein deubiquitination and restoration. These results demonstrate BAP1 as a major link with the BCR-ABL-induced downregulation of BRCA1 in CML.


Assuntos
Proteína BRCA1/metabolismo , Regulação para Baixo , Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Ubiquitina Tiolesterase/biossíntese , Proteína BRCA1/genética , Linhagem Celular , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Estabilidade Proteica , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
6.
Oncoscience ; 1(1): 57-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25593988

RESUMO

Tyrosine kinase inhibitors (TKIs) have profoundly changed the natural history of chronic myeloid leukemia (CML). However, acquired resistance to imatinib, dasatinib or nilotinib (1(st) and 2(nd) generation TKIs), due in part to BCR-ABL1 kinase mutations, has been largely described. These drugs are ineffective on the T315I gatekeeper substitution, which remains sensitive to 3(rd) generation TKI ponatinib. It has recently been suggested that the hematopoietic niche could protect leukemic cells from targeted therapy. In order to investigate the role of a stromal niche in mutation-related resistance, we developed a niche-based cell mutagenesis assay. For this purpose, ENU (N-ethyl-N-nitrosourea)-exposed UT-7 cells expressing non-mutated or T315I-mutated BCR-ABL1 were cultured with or without murine MS-5 stromal cells and in the presence of imatinib, dasatinib, nilotinib, or ponatinib. In the assays relative to 1(st) and 2(nd) generation TKIs, which were performed on non-mutated BCR-ABL1 cells, our data highlighted the increasing efficacy of the latter, but did not reveal any substantial effect of the niche. In ponatinib assays performed on both non-mutated and T315I-mutated BCR-ABL1 cells, an increased number of resistant clones were observed in the presence of MS-5. Present data suggested that T315I mutants need either compound mutations (e.g. E255K/T315I) or a stromal niche to escape from ponatinib. Using array-comparative genomic hybridization experiments, we found an increased number of variations (involving some recurrent chromosome regions) in clones cultured on MS-5 feeder. Overall, our study suggests that the hematopoietic niche could play a crucial role in conferring resistance to ponatinib, by providing survival signals and favoring genetic instability.

7.
Int J Cancer ; 128(4): 826-38, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20473906

RESUMO

Glioblastoma (GBM), the highest-grade form of gliomas, is the most frequent and the most aggressive. Recently, a subpopulation of cells with stem cells characteristics, commonly named "tumor-initiating stem cells" (TISCs) or "cancer stem cells" (CSCs) were identified in GBM. These cells were shown to be highly resistant to chemotherapeutic drugs and to ionizing radiations. Consequently, the knowledge of the signals that regulate the functions and survival of TISCs is crucial. In our work, we describe a neurosphere-initiating cell (NS-IC) assay to quantify TISC/CSCs from patients with GBM and show that these cells are tumorigenic in vivo. We demonstrate that the intracellular signal transducer and activator of transcription STAT3 is constitutively activated by phosphorylation preferentially on serine 727 in these cells. Moreover, we demonstrate that the selective inhibition of STAT3 by the chemical compound Stattic or by siRNA STAT3 abrogates TISC/CSC proliferation and NS-IC suggesting that self-renewal of GBM "stem-like" cells depends on the presence of STAT3 for their maintenance. Finally, we show that inhibition of STAT3 by Stattic sensitizes TISC/CSCs to the inhibitory action of Temozolomide with a strong synergistic effect of both drugs. Overall, these results suggest that strategies focused on STAT3 inhibition are efficient at the level of "stem-like" cells and could be of interest for therapeutic purposes in patients with malignant GBM.


Assuntos
Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Óxidos S-Cíclicos/farmacologia , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Sinergismo Farmacológico , Citometria de Fluxo , Imunofluorescência , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/antagonistas & inibidores , Temozolomida , Células Tumorais Cultivadas
8.
DNA Cell Biol ; 29(3): 121-31, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20025536

RESUMO

Prion diseases (e.g., Creutzfeldt-Jakob disease in humans) are always fatal neurodegenerative disorders characterized by conversion of the ubiquitous cellular prion protein (PrP(c)) into a pathological conformer. Immunological strategies are considered as promising prophylactic or therapeutic approaches but, unfortunately, vaccination attempts until now have been very disappointing in wild-type animals because of immune tolerance to self PrP(c). Encouraging results have come from recent experiments carried out through genetic immunization (i.e., injection in mice of cDNA coding for murine prion protein [PrP]) or heterologous protein immunization (i.e., injection in mice of PrP from another species), albeit the levels of autoantibodies in wild-type animals remained generally low. Here we investigated whether combining the potential benefits of these two last approaches, namely using genetic immunization with the cDNA coding for a heterologous PrP, could more efficiently break immune tolerance. Wild-type mice were thus vaccinated with cDNA coding for human PrP(c), fused or unfused to a stimulatory T-cell epitope, using or not using electrotransfer of DNA. After three DNA injections, mice receiving electrotransferred DNA developed a strong immune response, oriented toward the humoral Th2 type, characterized not only by high IgG1 and IgG2a antibody titers against the heterologous human PrP(c), but also, as expected, by significant amounts of autoantibodies recognizing the native conformation of murine PrP(c) expressed on cell membranes as revealed by flow cytometry and immunofluorescence. These results hence open the way for investigation of the possible protective effects of anti-PrP(c) autoantibodies in infected mouse models. More generally, our results suggest that this original immunization strategy could be of value for circumventing tolerance to poorly immunogenic proteins.


Assuntos
Autoanticorpos/imunologia , DNA Complementar/genética , Eletroporação , Imunização/métodos , Príons/genética , Príons/imunologia , Vacinas/imunologia , Animais , Epitopos de Linfócito T/imunologia , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Especificidade da Espécie , Toxina Tetânica/genética , Toxina Tetânica/imunologia , Células Th2/imunologia , Transfecção
9.
J Neuroimmunol ; 209(1-2): 50-6, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19232746

RESUMO

Prion diseases, which include Creutzfeldt-Jakob disease (CJD) in humans, are a group of devastating neurodegenerative disorders for which no therapy is yet available. However, passive immunotherapy appears to be a promising therapeutic approach, given that antibodies against the cellular prion protein (PrPc) have been shown in vitro to antagonize deposition of the disease-associated prion protein (PrPSc). Nevertheless, in vivo deleterious side effects of injected anti-PrP antibodies have been reported, mainly due to their Fc fragments and divalence. In this context, we examined here the ability of five Fabs (monovalent fragments devoid of the Fc part), prepared from antibodies already characterized in the laboratory, to inhibit prion replication in infected neuronal cells. We show that all Fabs (which all retain the same apparent affinity for PrPc as their whole antibody counterpart, as measured in EIA experiments) recognize quite well membrane bound-PrP in neuronal cells (as shown by flow cytometry analysis) and inhibit PrPSc formation in infected cells in a dose-dependent manner, most of them (four out of five) exhibiting a similar efficiency as whole antibodies. From a fundamental point of view, this report indicates that the in vitro curative effect of antibodies i) is epitope independent and only related to the efficiency of recognizing the native, membrane-inserted form of neuronal PrP and ii) probably occurs by directly or indirectly masking the PrPc epitopes involved in PrPSc interaction, rather than by cross-linking membrane bound PrPc. From a practical point of view, i.e. in the context of a possible immunotherapy of prion diseases, our data promote the use of monovalent antibodies (either Fabs or engineered recombinant fragments) for further in vivo studies.


Assuntos
Anticorpos/farmacologia , Fragmentos de Peptídeos/farmacologia , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/imunologia , Príons/antagonistas & inibidores , Príons/imunologia , Animais , Anticorpos/química , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/imunologia , Relação Dose-Resposta a Droga , Epitopos/imunologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Fragmentos de Peptídeos/síntese química , Proteínas PrPC/química , Proteínas PrPC/efeitos dos fármacos , Proteínas PrPC/imunologia , Proteínas PrPSc/antagonistas & inibidores , Proteínas PrPSc/química , Proteínas PrPSc/imunologia , Doenças Priônicas/fisiopatologia , Príons/química , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia
10.
J Immunol Methods ; 341(1-2): 41-9, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19027745

RESUMO

Generation of therapeutic antibodies against human proteins is hampered by the difficulty of obtaining large quantities of correctly folded immunogens when following classic immunization procedures. Here we compared several genetic immunization protocols for their potential ability to generate high levels of antibodies against proteins expressed in their native form. We chose as a model the prion protein (PrP) because it has been demonstrated that the recognition of the native conformation of PrP is an absolute prerequisite for anti-PrP antibodies to be used as therapeutic tools for prion diseases, a group of lethal neurodegenerative disorders. We designed two human PrP-DNA vectors, containing or not a stimulatory T cell epitope, which were injected into mice following four different protocols: in the naked form with or without electroporation, or protected by cationic polymers or block copolymers. For comparison, other animals received conventional injections of recombinant human PrP with Freund's adjuvant or alum. We found that genetic immunization, carried out especially through DNA electroporation and, to a lesser extent, through injection of block copolymer-protected DNA, was able to generate high amounts of antibodies recognizing native PrP as expressed on the cell surface. Conversely, protein immunizations led to very high levels of antibodies against PrP immobilized on microtiter plates, but unable to recognize the native cell membrane-bound PrP. This clearly demonstrates the usefulness of genetic immunization, when performed under well defined conditions, in raising antibodies to native proteins. These results are of interest not only in view of passive immunotherapy of prion diseases, but also, more generally, in view of generating antibodies to human membrane proteins for immunotherapeutic or immunodiagnostic purposes.


Assuntos
Anticorpos Monoclonais/imunologia , DNA/farmacologia , Vetores Genéticos/farmacologia , Imunização/métodos , Doenças Priônicas/imunologia , Príons/imunologia , Animais , Linhagem Celular , DNA/genética , DNA/imunologia , Eletroporação/métodos , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Camundongos , Doenças Priônicas/diagnóstico , Príons/análise , Príons/genética , Dobramento de Proteína
11.
Mol Immunol ; 44(8): 1888-96, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17140664

RESUMO

Since antibodies currently constitute the most rapidly growing class of human therapeutics, the high-yield production of recombinant antibodies and antibody fragments is a real challenge. Using as model a monoclonal antibody directed against the human prion protein that we prepared previously and tested for its therapeutic value, we describe here experimental conditions allowing the production of large quantities (up to 35 mg/l of bacterial culture) of correctly refolded and totally functional single chain fragment variable (scFv). These quantities were sufficient to characterize the binding properties of this small recombinant fragment through in vitro and ex vivo approaches. Interestingly, this scFv retains full binding capacity for its antigen, i.e. the human prion protein, when compared with the corresponding Fab or whole antibody, and recognizes soluble, solid-phase-adsorbed, and membrane-bound prion protein. This strongly suggests that from the mAb cloning step to the refolding of the recombinant fragment, each stage is well controlled, leading to almost 100% functional scFv. These results are of interest not only in view of possible immunotherapy for prion diseases, but also more generally in emphasizing the great promise of these small recombinant molecules in the context of targeted therapies.


Assuntos
Anticorpos Monoclonais/biossíntese , Região Variável de Imunoglobulina/biossíntese , Proteínas Recombinantes/biossíntese , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/uso terapêutico , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/imunologia , Príons/genética , Príons/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico
12.
J Biol Chem ; 279(4): 2927-36, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14585835

RESUMO

Endostatin (20 kDa) is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds zinc, heparin/heparan sulfate, laminin, and sulfatides and inhibits angiogenesis and tumor growth. Here we determined the kinetics and affinity of the interaction of endostatin with heparin/heparan sulfate and investigated the effects of divalent cations on these interactions and on the biological activities of endostatin. The binding of human recombinant endostatin to heparin and heparan sulfate was studied by surface plasmon resonance using BIAcore technology and further characterized by docking and molecular dynamics simulations. Kinetic data, evaluated using a 1:1 interaction model, showed that heparan sulfate bound to and dissociated from endostatin faster than heparin and that endostatin bound to heparin and heparan sulfate with a moderate affinity (K(D) approximately 2 microm). Molecular modeling of the complex between endostatin and heparin oligosaccharides predicted that, compared with mutagenesis studies, two further arginine residues, Arg(47) and Arg(66), participated in the binding. The binding of endostatin to heparin and heparan sulfate required the presence of divalent cations. The addition of ZnCl(2) to endostatin enhanced its binding to heparan sulfate by approximately 40% as well as its antiproliferative effect on endothelial cells stimulated by fibroblast growth factor-2, suggesting that this activity is mediated by the binding of endostatin to heparan sulfate. In contrast, no increase in the antiangiogenic and anti-proliferative activities of endostatin promoted by vascular endothelial growth factor was observed upon the addition of zinc.


Assuntos
Endostatinas/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Cátions Bivalentes , Endostatinas/química , Heparina/química , Heparitina Sulfato/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
13.
Hum Gene Ther ; 14(10): 997-1008, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12869217

RESUMO

Endostatin has been considered a highly specific inhibitor of endothelial cell proliferation and/or migration. To explore the use of endostatin in antiangiogenic gene therapy, we generated a recombinant adenovirus, AdEndo, carrying the gene for mouse endostatin. Injection of 10(9) PFU of AdEndo resulted in a low but significant suppression (25%) of preestablished tumor growth in murine models involving murine Lewis lung carcinoma (LLC) and human breast cancer MDA-MB-231 tumors. Greater anticancer activity was observed when the same dose of AdEndo was injected into two other preestablished murine models involving C51 murine colon cancer and HT29 human colon cancer (55 and 47% tumor growth reduction, respectively). In vitro, endostatin derived from AdEndo-infected MRC-5 fibroblasts inhibited the growth of C51 and HT29 cell lines (72 and 61%, respectively). The extent of this inhibition was comparable to that observed in endothelial cells: 75% for microcapillary endothelial cell line HMEC-1, 52% for human dermal microvascular endothelial cells, 46% for human umbilical vein endothelial cells, and 67% for calf pulmonary arterial endothelial cells. Both endothelial and colon cancer cells showed a clear increase in cell apoptosis (4- to 5-fold for endothelial cells and 5- to 10-fold for colon cancer cells) and an accumulation in the G(1) phase of the cell cycle. This antiproliferative activity was not observed in other tumor cell lines: LLC, MDA-MB-231, murine colon adenocarcinoma MC38, human prostate cancer cell line DU145, and human breast cancer cell line CAL51. Taken together, these results provide evidence that, in addition to its antiangiogenic activity, endostatin exerts a direct anticancer action that appears to be restricted to some tumor cell lines. Thus, endostatin could be used in some colon cancer treatments and its clinical efficacy would depend on the response of tumor cells themselves.


Assuntos
Adenoviridae/genética , Inibidores da Angiogênese , Antineoplásicos , Colágeno/genética , Neoplasias do Colo/terapia , Fragmentos de Peptídeos/genética , Animais , Apoptose , Ciclo Celular , Divisão Celular , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Endostatinas , Endotélio Vascular/citologia , Feminino , Citometria de Fluxo , Vetores Genéticos , Humanos , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Integrina alfaV/genética , Integrina alfaV/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Neovascularização Patológica , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...