Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 3(4): 708, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858593

RESUMO

The original paper was published without unique DOIs for GBIF occurrence downloads. These have now been inserted as references 70-76, and the error has been corrected in the PDF and HTML versions of the article.

2.
Nat Ecol Evol ; 2(12): 1889-1896, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397301

RESUMO

A foundational paradigm in biological and Earth sciences is that our planet is divided into distinct ecoregions and biomes demarking unique assemblages of species. This notion has profoundly influenced scientific research and environmental policy. Given recent advances in technology and data availability, however, we are now poised to ask whether ecoregions meaningfully delimit biological communities. Using over 200 million observations of plants, animals and fungi we show compelling evidence that ecoregions delineate terrestrial biodiversity patterns. We achieve this by testing two competing hypotheses: the sharp-transition hypothesis, positing that ecoregion borders divide differentiated biotic communities; and the gradual-transition hypothesis, proposing instead that species turnover is continuous and largely independent of ecoregion borders. We find strong support for the sharp-transition hypothesis across all taxa, although adherence to ecoregion boundaries varies across taxa. Although plant and vertebrate species are tightly linked to sharp ecoregion boundaries, arthropods and fungi show weaker affiliations to this set of ecoregion borders. Our results highlight the essential value of ecological data for setting conservation priorities and reinforce the importance of protecting habitats across as many ecoregions as possible. Specifically, we conclude that ecoregion-based conservation planning can guide investments that simultaneously protect species-, community- and ecosystem-level biodiversity, key for securing Earth's life support systems into the future.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Biodiversidade , Ecologia
3.
J Microbiol Methods ; 115: 112-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055315

RESUMO

We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communities. 'Activity ratios' were calculated for bacteria and archaea in soil sampled from a tropical rainforest and temperate agricultural field and incubated for one year at two levels of moisture availability and with and without carbon additions. Prior to calculating activity ratios, we corrected the relative abundances of OTUs to account for multiple copies of the 16S gene per genome. Although necessary to ensure accurate activity ratios, this correction did not change our interpretation of differences in microbial community composition across treatments. Activity ratios in this study were lower than those previously published (0.0003-210, logarithmic mean=0.24), suggesting significant extracellular DNA preservation. After controlling for the influence of individual incubation jars, significant differences in activity ratios between all members of each phylum were observed. Planctomycetes and Firmicutes had the highest activity ratios and Crenarchaeota had the lowest activity overall. Our results suggest that greater caution should be taken in interpreting soil microbial community data derived from extracted DNA. Indirect extraction methods may be useful in ensuring that microbes identified from extracellular DNA are not erroneously interpreted as components of an active microbial community.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , DNA Arqueal/química , DNA Bacteriano/química , DNA Ribossômico/química , RNA Ribossômico 16S/química , Microbiologia do Solo , Archaea/química , Archaea/classificação , Archaea/genética , Bactérias/química , Bactérias/classificação , Bactérias/genética , DNA Arqueal/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...