Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biodivers Data J ; 12: e113770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314124

RESUMO

Background: Only a few comprehensive studies have been carried out on parasites in amphibians and reptiles in Ukraine. This has resulted in identifying over 100 helminth species across these vertebrate groups. However, most of the studies were performed in the 20th century and the taxonomy of many parasites and their hosts has changed ever since, in addition to the discovery of new species and registrations of species that had not been previously known for Ukraine. In recent decades, there have been very few publications on helminths from amphibian or reptile hosts in this region. Notably, just one of these recent studies is a faunistic study, providing a list of helminths found in two species of green frogs - Pelophylaxridibundus (Pallas, 1771) and Pelophylaxesculentus (Linnaeus, 1758). Therefore, it is clear that publishing datasets of modern records of helminths in these vertebrate groups, based on modern taxonomy, is an essential step in further studies of their parasitic diversity. Additionally, such study is important in terms of global climate change, the growing number of possibilities of invasion of alien species (both hosts and parasites) that might potentially become a threat to native biota and growing anthropogenic pressure on local populations of hosts that affect the parasites as well. In future, this study is planned to be used for the creation of a checklist of helminths of the herpetofauna of Ukraine. The present dataset is an inventory of various species of helminths parasitising common species of the herpetofauna in central, northern, western and southern Ukraine recorded during field studies in the 2021-2023 period. New information: The dataset is the first one to represent the up-to-date and unified data on helminths of reptiles and amphibians of Ukraine. Previously, records of this group of organisms with reference to their hosts were presented as several separate records within the country. Currently, this is the largest dataset presenting geocoded records of non-human-related helminths in the fauna of Ukraine. It reports helminth species from 15 hosts (205 individuals), including eight amphibians and seven reptilian species found in various Ukrainian regions. A total of 47 helminth species have been documented in the research and during 2021-2023 period on the territory of northern (Kyiv and Zhytomyr), western (Lviv, Zakarpattia Ivano-Frankivsk), central (Vinnytsia, Dnipropetrovsk, Cherkasy, Zaporizhzhia and Poltava) and southern (Odesa) regions of Ukraine. The identified helminth species belong to the following phyla: Acanthocephala (Centrorhynchidae (2), Echinorhynchidae (2)); Nematoda (Acuariidae, Anisakidae, Cosmocercidae (3), Dioctophymatidae, Gnathostomatidae (1), Kathlanidae (1), Molineidae (7), Onchocercidae (1), Pharyngodonidae (1), Rhabdiasidae (6), Strongyloididae); Platyhelminthes (Diplodiscidae (1), Diplostomidae (2), Encyclometridae (1), Haematoloechidae (1), Leptophallidae (2), Macroderidae (1), Mesocestoididae, Opisthorchiidae (2), Plagiorchiidae (3), Pleurogenidae (2), Polystomatidae (3), Proteocephalidae (1), Strigeidae (1) and Telorchiidae (3)). Only some helminths in the dataset were not identified to species level. Material is stored in the collection of the department of Parasitology of the I. I. Schmalhausen Institute of Zoology NAS of Ukraine.

2.
Parasitol Res ; 122(3): 853-865, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36737553

RESUMO

Patterns of the rockcod Notothenia coriiceps infection with helminths were analysed to understand the dynamics of parasite communities in this Antarctic fish and to test their stability over time. The study was performed using helminth samples collected from 183 N. coriiceps in 2014-2015 and 2020-2021 in the vicinity of the Ukrainian Antarctic station (UAS) "Akademik Vernadsky", Galindez Island, Argentine Islands, West Antarctica. Overall, 25 helminth taxonomical categories (nine trematodes, four cestodes, five nematodes, and seven acanthocephalans) were subjected to analysis. A direct comparison of the helminth population characteristics showed that nine species significantly changed their infection parameters during the 6 years between the samples. Seven of them (Pseudoterranova sp., Contracaecum sp., Ascarophis nototheniae, monolocular metacestodes, bilocular metacestodes, Metacanthocephalus rennicki, and Diphyllobothrium sp.) were found to have a significant impact on the differences between helminth infracommunities in 2014-2015 and 2020-2021. Most studied patterns of helminth component community appeared to show a stable tendency, and observed fluctuations were close to the steady trend. Slight but significant changes in the infection patterns observed in this study might have been caused by changes in the populations of intermediate, paratenic, and definitive hosts of helminths (marine invertebrates, mammals, and birds), which participate in helminth transmission in Antarctic ecosystems.


Assuntos
Helmintíase Animal , Helmintos , Perciformes , Animais , Regiões Antárticas , Ecossistema , Perciformes/parasitologia , Peixes , Mamíferos , Helmintíase Animal/epidemiologia , Helmintíase Animal/parasitologia
3.
Acta Parasitol ; 65(2): 341-353, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31974765

RESUMO

PURPOSE: The study aims to characterise and compare the helminth assemblages and helminth infracommunities in the marsh frog, Pelophylax ridibundus and the edible frog, P. esculentus collected in the northern part of Ukraine. METHODS: Occurrence and abundance of the helminths were analysed by calculating the prevalence, intensity, and mean abundance of infection; similarities between the infracommunities were estimated by the Bray-Curtis index and visualised using nMDS plots. Dissimilarities were estimated using the ANOSIM and SIMPER routines. RESULTS: In total, 27 helminth species were found in 143 frogs. Pelophylax ridibundus (n = 86) harboured 20 species of helminths, 24 species were found in P. esculentus (n = 57), and 17 species were shared by the two hosts. Oswaldocruzia bialata and larval Strigea sp. were absent in P. ridibundus, while they reached the prevalence of 30% and 10%, respectively, in P. esculentus. Cosmocerca ornata, Diplodiscus subclavatus, Opisthioglyphe ranae, and Codonocephalus urniger had significantly larger prevalence in P. ridibundus, whereas Haematoloechus asper was found to be more prevalent in P. esculentus. Acanthocephalus ranae, Icosiella neglecta, Haematoloechus variegatus, Pleurogenes claviger, Pleurogenoides medians, and Prosotocus confusus were equally common in both hosts. Helminth infracommunities in the two hosts had identical species richness (1-10 species, 4 on average); abundance was significantly higher in P. ridibundus. CONCLUSIONS: Helminth assemblages of the two hosts in northern Ukraine are rather similar; however, small but significant differences were found in their species composition, parameters of infection in some species, and structure of helminth infracommunities.


Assuntos
Helmintíase Animal/parasitologia , Helmintos/classificação , Ranidae/parasitologia , Animais , Helmintíase Animal/epidemiologia , Helmintos/crescimento & desenvolvimento , Helmintos/isolamento & purificação , Incidência , Prevalência , Rana esculenta/parasitologia , Rana ridibunda/parasitologia , Estações do Ano , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária , Ucrânia/epidemiologia
4.
J Parasitol ; 105(5): 821-826, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31670613

RESUMO

Codonocephalus is a monotypic genus of diplostomid digeneans and is the only genus in the sub-family Codonocephalinae. The type-species Codonocephalus urniger has an unusual progenetic metacercaria that uses frogs as intermediate hosts and can use snakes as paratenic hosts. Adult C. urniger parasitize ardeid wading birds in the Palearctic. Despite the broad distribution of Codonocephalus, no DNA sequence data are currently available for the genus. In this study, we generated sequence data for nuclear ribosomal and mitochondrial DNA from progenetic metacercaria of the type-species C. urniger from marsh frog, Pelophylax ridibundus, collected in Ukraine. We used partial sequences of the nuclear ribosomal 28S gene to examine for the first time the phylogenetic position of Codonocephalus among the Diplostomoidea.


Assuntos
Filogenia , Ranidae/parasitologia , Trematódeos/classificação , Infecções por Trematódeos/veterinária , Animais , Teorema de Bayes , DNA de Helmintos/química , DNA de Helmintos/isolamento & purificação , DNA Ribossômico/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Estágios do Ciclo de Vida , Metacercárias/classificação , Metacercárias/genética , Microscopia Eletrônica de Varredura/veterinária , Mitocôndrias/enzimologia , RNA de Helmintos/genética , RNA Nuclear/genética , RNA Ribossômico 28S/genética , Trematódeos/genética , Trematódeos/ultraestrutura , Infecções por Trematódeos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...