Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 132, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474952

RESUMO

BACKGROUND: Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known. RESULTS: Roseoflavin biosynthesis genes have been expressed in riboflavin- or FMN-overproducing yeast strains of Candida famata and Komagataella phaffii. Both these strains accumulated aminoriboflavin, whereas only the latter produced roseoflavin. Aminoriboflavin isolated from the culture liquid of C. famata strain inhibited the growth of Staphylococcus aureus (including MRSA) and Listeria monocytogenes. Maximal accumulation of aminoriboflavin in shake-flasks reached 1.5 mg L- 1 (C. famata), and that of roseoflavin was 5 mg L- 1 (K. phaffii). Accumulation of aminoriboflavin and roseoflavin by K. phaffii recombinant strain in a bioreactor reached 22 and 130 mg L- 1, respectively. For comparison, recombinant strains of the native bacterial producer S. davaonensis accumulated near one-order less of roseoflavin while no recombinant producers of aminoriboflavin was reported at all. CONCLUSIONS: Yeast recombinant producers of bacterial antibiotics aminoriboflavin and roseoflavin were constructed and evaluated.


Assuntos
Antibacterianos , Eucariotos , Antibacterianos/farmacologia , Riboflavina
2.
Front Bioeng Biotechnol ; 11: 1106973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865030

RESUMO

This review presents a comprehensive summary of the latest research in the field of bioremediation with filamentous fungi. The main focus is on the issue of recent progress in remediation of pharmaceutical compounds, heavy metal treatment and oil hydrocarbons mycoremediation that are usually insufficiently represented in other reviews. It encompasses a variety of cellular mechanisms involved in bioremediation used by filamentous fungi, including bio-adsorption, bio-surfactant production, bio-mineralization, bio-precipitation, as well as extracellular and intracellular enzymatic processes. Processes for wastewater treatment accomplished through physical, biological, and chemical processes are briefly described. The species diversity of filamentous fungi used in pollutant removal, including widely studied species of Aspergillus, Penicillium, Fusarium, Verticillium, Phanerochaete and other species of Basidiomycota and Zygomycota are summarized. The removal efficiency of filamentous fungi and time of elimination of a wide variety of pollutant compounds and their easy handling make them excellent tools for the bioremediation of emerging contaminants. Various types of beneficial byproducts made by filamentous fungi, such as raw material for feed and food production, chitosan, ethanol, lignocellulolytic enzymes, organic acids, as well as nanoparticles, are discussed. Finally, challenges faced, future prospects, and how innovative technologies can be used to further exploit and enhance the abilities of fungi in wastewater remediation, are mentioned.

3.
Vet Comp Oncol ; 21(2): 270-278, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36808425

RESUMO

Mammary tumours constitute more than half of neoplasms in female dogs from different countries. Genome sequences are associated with cancer susceptibility but there is little information available about genetic polymorphisms of glutathione S-transferase P1 (GSTP1) in canine cancers. The aim of this study was to find single nucleotide polymorphisms (SNPs) in GSTP1 of dogs (Canis lupus familiaris) with mammary tumours compared to healthy dogs and to determine the association between GSTP1 polymorphisms and the occurrence of these tumours. The study population included 36 client-owned female dogs with mammary tumours and 12 healthy female dogs, with no previous diagnosis of cancer. DNA was extracted from blood and amplified by PCR assay. PCR-products were sequenced by Sanger method and analysed manually. The 33 polymorphisms were found in GSTP1: 1 coding SNP (exon 4), 24 non-coding SNPs (9 in exon 1), 7 deletions and 1 insertion. The 17 polymorphisms have been found in introns 1, 4, 5 and 6. The dogs with mammary tumours have significant difference from healthy in SNPs I4 c.1018 + 123 T > C (OR 13.412, 95%CI 1.574-114.267, P = .001), I5 c.1487 + 27 T > C (OR 10.737, 95%CI 1.260-91.477, P = .004), I5 c.1487 + 842 G > C (OR 4.714, 95% CI 1.086-20.472, P = .046) and I6 c.2481 + 50 A > G (OR 12.000, 95% CI 1.409-102.207, P = .002). SNP E5 c.1487 T > C and I5 c.1487 + 829 delG also differed significantly (P = .03) but not to the confidence interval. The study, for the first time, showed a positive association of SNPs in GSTP1 with mammary tumours of dogs, that can possibly be used to predict the occurrence of this pathology.


Assuntos
Doenças do Cão , Glutationa Transferase , Cães , Animais , Feminino , Glutationa Transferase/genética , Glutationa S-Transferase pi/genética , Doenças do Cão/genética , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase/veterinária , Predisposição Genética para Doença , Estudos de Casos e Controles , Genótipo
4.
Yeast ; 40(8): 360-366, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36751139

RESUMO

Flavin mononucleotide (FMN, riboflavin-5'-phosphate) is flavin coenzyme synthesized in all living organisms from riboflavin (vitamin B2 ) after phosphorylation in the reaction catalyzed by riboflavin kinase. FMN has several applications mostly as yellow colorant in food industry due to 200 times better water solubility as compared to riboflavin. Currently, FMN is produced by chemical phosphorylation of riboflavin, however, final product contains up to 25% of flavin impurities. Microbial overproducers of FMN are known, however, they accumulate this coenzyme in glucose medium. Current work shows that the recombinant strains of the flavinogenic yeast Candida famata with overexpressed FMN1 gene coding for riboflavin kinase in the recently isolated by us advanced riboflavin producers due to overexpression of the structural and regulatory genes of riboflavin synthesis and of the putative exporter of riboflavin from the cell, synthesized elevated amounts of FMN in the media not only with glucose but also in lactose and cheese whey. Activation of FMN accumulation on lactose and cheese whey was especially strong in the strains which expressed the gene of transcription activator SEF1 under control of the lactose-induced LAC4 promoter. The accumulation of this coenzyme by the washed cells of the best recombinant strain achieved 540 mg/L in the cheese whey supplemented only with ammonium sulfate during 48 h in shake flask experiments.


Assuntos
Debaryomyces , Mononucleotídeo de Flavina , Saccharomyces cerevisiae , Candida/genética , Lactose , Riboflavina , Glucose
5.
Microb Cell Fact ; 21(1): 161, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964025

RESUMO

BACKGROUND: Riboflavin is a precursor of FMN and FAD which act as coenzymes of numerous enzymes. Riboflavin is an important biotechnological commodity with annual market sales exceeding nine billion US dollars. It is used primarily as a component of feed premixes, a food colorant, a component of multivitamin mixtures and medicines. Currently, industrial riboflavin production uses the bacterium, Bacillus subtilis, and the filamentous fungus, Ashbya gossypii, and utilizes glucose and/or oils as carbon substrates. RESULTS: We studied riboflavin biosynthesis in the flavinogenic yeast Candida famata that is a genetically stable riboflavin overproducer. Here it was found that the wild type C. famata is characterized by robust growth on lactose and cheese whey and the engineered strains also overproduce riboflavin on whey. The riboflavin synthesis on whey was close to that obtained on glucose. To further enhance riboflavin production on whey, the gene of the transcription activator SEF1 was expressed under control of the lactose-induced promoter of the native ß-galactosidase gene LAC4. These transformants produced elevated amounts of riboflavin on lactose and especially on whey. The strain with additional overexpression of gene RIB6 involved in conversion of ribulose-5-phosphate to riboflavin precursor had the highest titer of accumulated riboflavin in flasks during cultivation on whey. Activation of riboflavin synthesis was also obtained after overexpression of the GND1 gene that is involved in the synthesis of the riboflavin precursor ribulose-5-phosphate. The best engineered strains accumulated 2.5 g of riboflavin/L on whey supplemented only with (NH4)2SO4 during batch cultivation in bioreactor with high yield (more than 300 mg/g dry cell weight). The use of concentrated whey inhibited growth of wild-type and engineered strains of C. famata, so the mutants tolerant to concentrated whey were isolated. CONCLUSIONS: Our data show that the waste of dairy industry is a promising substrate for riboflavin production by C. famata. Possibilities for using the engineered strains of C. famata to produce high-value commodity (riboflavin) from whey are discussed.


Assuntos
Queijo , Candida/genética , Mononucleotídeo de Flavina , Glucose , Lactose , Fosfatos , Riboflavina , Soro do Leite
6.
Microb Cell Fact ; 21(1): 162, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964033

RESUMO

BACKGROUND: Fuel ethanol from lignocellulose could be important source of renewable energy. However, to make the process feasible, more efficient microbial fermentation of pentose sugars, mainly xylose, should be achieved. The native xylose-fermenting thermotolerant yeast Ogataea polymorpha is a promising organism for further development. Efficacy of xylose alcoholic fermentation by O. polymorpha was significantly improved by metabolic engineering. Still, genes involved in regulation of xylose fermentation are insufficiently studied. RESULTS: We isolated an insertional mutant of O. polymorpha with impaired ethanol production from xylose. The insertion occurred in the gene HXS1 that encodes hexose transporter-like sensor, a close homolog of Saccharomyces cerevisiae sensors Snf3 and Rgt2. The role of this gene in xylose utilization and fermentation was not previously elucidated. We additionally analyzed O. polymorpha strains with the deletion and overexpression of the corresponding gene. Strains with deletion of the HXS1 gene had slower rate of glucose and xylose consumption and produced 4 times less ethanol than the wild-type strain, whereas overexpression of HXS1 led to 10% increase of ethanol production from glucose and more than 2 times increase of ethanol production from xylose. We also constructed strains of O. polymorpha with overexpression of the gene AZF1 homologous to S. cerevisiae AZF1 gene which encodes transcription activator involved in carbohydrate sensing. Such transformants produced 10% more ethanol in glucose medium and 2.4 times more ethanol in xylose medium. Besides, we deleted the AZF1 gene in O. polymorpha. Ethanol accumulation in xylose and glucose media in such deletion strains dropped 1.5 and 1.8 times respectively. Overexpression of the HXS1 and AZF1 genes was also obtained in the advanced ethanol producer from xylose. The corresponding strains were characterized by 20-40% elevated ethanol accumulation in xylose medium. To understand underlying mechanisms of the observed phenotypes, specific enzymatic activities were evaluated in the isolated recombinant strains. CONCLUSIONS: This paper shows the important role of hexose sensor Hxs1 and transcription factor Azf1 in xylose and glucose alcoholic fermentation in the native xylose-fermenting yeast O. polymorpha and suggests potential importance of the corresponding genes for construction of the advanced ethanol producers from the major sugars of lignocellulose.


Assuntos
Proteínas Fúngicas/metabolismo , Xilose , Etanol/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Pichia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilose/metabolismo
7.
Viruses ; 14(7)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35891331

RESUMO

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in unprecedented morbidity and mortality worldwide. The host cells use a number of pattern recognition receptors (PRRs) for early detection of coronavirus infection, and timely interferon secretion is highly effective against SARS-CoV-2 infection. However, the virus has developed many strategies to delay interferon secretion and disarm cellular defense by intervening in interferon-associated signaling pathways on multiple levels. As a result, some COVID-19 patients suffered dramatic susceptibility to SARS-CoV-2 infection, while another part of the population showed only mild or no symptoms. One hypothesis suggests that functional differences in innate immune integrity could be the key to such variability. This review tries to decipher possible interactions between SARS-CoV-2 proteins and human antiviral interferon sensors. We found that SARS-CoV-2 actively interacts with PRR sensors and antiviral pathways by avoiding interferon suppression, which could result in severe COVID-19 pathogenesis. Finally, we summarize data on available antiviral pharmaceutical options that have shown potential to reduce COVID-19 morbidity and mortality in recent clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/uso terapêutico , Humanos , Imunidade Inata , Interferons , Pandemias , SARS-CoV-2
8.
Antonie Van Leeuwenhoek ; 114(9): 1373-1385, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34170419

RESUMO

Lignocellulosic biomass is an attractive sustainable platform for fuel ethanol production. Xylose is a second after glucose most abounded sugar in lignocellulosic hydrolysates. Effective conversion of xylose to ethanol is one of key prerequisite for the development of an efficient conversion of biomass to ethanol. Engineered Saccharomyces cerevisiae strains are able to xylose fermentation. However, the yield and productivities of xylose fermentation remains lower in comparison with glucose fermentation. In this work, we studied impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose catabolism. We have isolated znf1Δ, adr1Δ, tup1Δ and hap4Δ mutants, and strains overexpressing SIP4, ADR1 and HAP4 genes on the background of xylose-fermenting strain of S. cerevisiae aiming to explore involvement of these transcription factors in regulation of xylose growth and fermentation. It was shown that hap4Δ reveal 1.8-fold increase of ethanol production from xylose as compared to that of parental strain. The hap4Δ mutant accumulates 10.38 g l-1 of ethanol with an overall ethanol yield reaching 0.41 g g-1 of consumed xylose. While the other constructed strains revealed a decrease in ethanol production from this pentose.


Assuntos
Proteínas de Saccharomyces cerevisiae , Xilose , Proteínas de Ligação a DNA , Fermentação , Glucose , Proteínas Nucleares , Proteínas Repressoras , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
9.
FEMS Yeast Res ; 21(4)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33983391

RESUMO

Glucose is a preferred carbon source for most living organisms. The metabolism and regulation of glucose utilization are well studied mostly for Saccharomyces cerevisiae. Xylose is the main pentose sugar released from the lignocellulosic biomass, which has a high potential as a renewable feedstock for bioethanol production. The thermotolerant yeast Ogataea (Hansenula) polymorpha, in contrast to S. cerevisiae, is able to metabolize and ferment not only glucose but also xylose. However, in non-conventional yeasts, the regulation of glucose and xylose metabolism remains poorly understood. In this study, we characterize the role of transcriptional factors Mig1, Mig2, Tup1 and Hap4 in the natural xylose-fermenting yeast O. polymorpha. The deletion of MIG1 had no significant influence on ethanol production either from xylose or glucose, however the deletion of both MIG1 and MIG2 reduced the amount of ethanol produced from these sugars. The deletion of HAP4-A and TUP1 genes resulted in increased ethanol production from xylose. Inversely, the overexpression of HAP4-A and TUP1 genes reduced ethanol production during xylose alcoholic fermentation. Thus, HAP4-A and TUP1 are involved in repression of xylose metabolism and fermentation in yeast O. polymorpha and their deletion could be a viable strategy to improve ethanol production from this pentose.


Assuntos
Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Saccharomycetales/metabolismo , Fatores de Transcrição/metabolismo , Xilose/metabolismo , Fermentação , Deleção de Genes , Microbiologia Industrial , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo
10.
Methods Mol Biol ; 2280: 15-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33751426

RESUMO

The approaches used by the authors to design the Candida famata strains capable to overproduce riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) are described. The metabolic engineering approaches include overexpression of SEF1 gene encoding positive regulator of riboflavin biosynthesis, IMH3 (coding for IMP dehydrogenase) orthologs from another species of flavinogenic yeast Debaryomyces hansenii, and the homologous genes RIB1 and RIB7 encoding GTP cyclohydrolase II and riboflavin synthase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the above mentioned genes in the genetically stable riboflavin overproducer AF-4 obtained by classical selection resulted in fourfold increase of riboflavin production in shake flask experiments.Overexpression of engineered enzymes phosphoribosyl pyrophosphate synthetase and phosphoribosyl pyrophosphate amidotransferase catalyzing the initial steps of purine nucleotide biosynthesis enhances riboflavin synthesis in the flavinogenic yeast C. famata even more.Recombinant strains of C. famata containing FMN1 gene from D. hansenii encoding riboflavin kinase under control of the strong constitutive TEF1 promoter were constructed. Overexpression of the FMN1 gene in the riboflavin-producing mutant led to the 30-fold increase of the riboflavin kinase activity and 400-fold increase of FMN production in the resulting recombinant strains which reached maximally 318.2 mg/L.FAD overproducing strains of C. famata were also constructed. This was achieved by overexpression of FAD1 gene from D. hansenii in C. famata FMN overproducing strain. The 7- to 15-fold increase in FAD synthetase activity as compared to the wild-type strain and FAD accumulation into cultural medium were observed. The maximal FAD titer 451.5 mg/L was achieved.


Assuntos
Candida/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Engenharia Metabólica/métodos , Técnicas de Cultura Celular por Lotes , Vias Biossintéticas , Candida/genética , Candida/metabolismo , Mononucleotídeo de Flavina/biossíntese , Mononucleotídeo de Flavina/genética , Flavina-Adenina Dinucleotídeo/biossíntese , Flavina-Adenina Dinucleotídeo/genética , Riboflavina/biossíntese , Riboflavina/genética
11.
Methods Mol Biol ; 2280: 31-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33751427

RESUMO

Many microorganisms are capable of riboflavin oversynthesis and accumulation in a medium, suggesting that they efficiently excrete riboflavin. The mechanisms of riboflavin efflux in microorganisms remain elusive. Candida famata are representatives of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B2) in response to iron limitation. The riboflavin overproducers of this yeast species have been obtained by classical mutagenesis and metabolic engineering. Overproduced riboflavin accumulates in the cultural medium rather than in the cells suggesting existence of the special mechanisms involved in riboflavin excretion. The appropriate protein and gene have not been identified in yeasts till recently. At the same time, the gene BCRP (breast cancer resistance protein) has been identified in mammal mammary glands. Several homologs of the mammal BCRP gene encoding putative riboflavin efflux protein (excretase) were identified in the flavinogenic yeasts Debaryomyces hansenii and C. famata. Here we evaluate the yeast homologs of BCRP with respect to improvement of a riboflavin production by C. famata. The closest homologs from D. hansenii or C. famata were expressed under the control of TEF1 promoter of these yeasts in the wild-type and riboflavin-overproducing strains of C. famata. Resulted transformants overexpressed the corresponding genes (designated as DhRFE and CfRFE) and produced 1.4- to 6-fold more riboflavin as compared to the corresponding parental strains. They also were characterized by overexpression of RIB1 and RIB6 genes which encode the first and the last structural enzymes of riboflavin synthesis and exhibited elevated specific activity of GTP cyclohydrolase II. Thus, overexpression of yeast homolog of mammal gene BCRP may be useful to increase the riboflavin yield in a riboflavin production process using a recombinant overproducing C. famata strain or other flavinogenic microorganisms.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Candida/crescimento & desenvolvimento , Engenharia Metabólica/métodos , Riboflavina/biossíntese , Candida/genética , Candida/metabolismo , Clonagem Molecular , Meios de Cultura/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas , Regulação para Cima
12.
Methods Mol Biol ; 2280: 249-260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33751440

RESUMO

Flavocytochrome b2 (EC 1.1.2.3; L-lactate cytochrome: c oxidoreductase, FC b2) from the thermotolerant methylotrophic yeast Ogataea polymorpha is a thermostable enzyme-prospective for a highly selective L-lactate analysis in the medicine, nutrition sector, and quality control of commercial products. Here we describe the construction of FC b2 producers by overexpression of the CYB2 gene O. polymorpha, encoding FC b2, under the control of a strong alcohol oxidase promoter in the frame of plasmid for multicopy integration with the next transformation of recipient strain O. polymorpha C-105 (gcr1 catX) impaired in the glucose repression and devoid of catalase activity. The selected recombinant strain O. polymorpha "tr1" (gcr1 catX CYB2), characterized by eightfold increased FC b2 activity compared to the initial strain, was used as a source of the enzyme. For purification of FC b2 a new method of affinity chromatography was developed and purified preparations of the enzyme were used for the construction of the highly selective enzymatic kits and amperometric biosensor for L-lactate analysis in human liquids and foods.


Assuntos
L-Lactato Desidrogenase (Citocromo)/metabolismo , Engenharia de Proteínas/métodos , Saccharomycetales/crescimento & desenvolvimento , Técnicas Biossensoriais , Cromatografia de Afinidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , L-Lactato Desidrogenase (Citocromo)/genética , Ácido Láctico/análise , Plasmídeos/genética , Regiões Promotoras Genéticas , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transformação Genética
13.
Cell Biol Int ; 45(3): 528-535, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31903651

RESUMO

Many enzymes of methanol metabolism of methylotrophic yeasts are located in peroxisomes whereas some of them have the cytosolic localization. After shift of methanol-grown cells of methylotrophic yeasts to glucose medium, a decrease in the activity of cytosolic (formaldehyde dehydrogenase, formate dehydrogenase, and fructose-1,6-bisphosphatase [FBP]) along with peroxisomal enzymes of methanol metabolism is observed. Mechanisms of inactivation of cytosolic enzymes remain unknown. To study the mechanism of FBP inactivation, the changes in its specific activity of the wild type strain GS200, the strain with the deletion of the GSS1 hexose sensor gene and strain defected in autophagy pathway SMD1163 of Komagataella phaffii with or without the addition of the MG132 (proteasome degradation inhibitor) were investigated after shift of methanol-grown cells in glucose medium. Western blot analysis showed that inactivation of FBP in GS200 occurred due to protein degradation whereas inactivation in the strains SMD1163 and gss1Δ was negligible in such conditions. The effect of the proteasome inhibitor MG132 on FBP inactivation was insignificant. To confirm FBP degradation pathway, the recombinant strains with GFP-labeled Fbp1 of K. phaffii and red fluorescent protein-labeled peroxisomes were constructed on the background of GS200 and SMD1163. The fluorescent microscopy analysis of the constructed strains was performed using the vacuolar membrane dye FM4-64. Microscopic data confirmed that Fbp1 degrades by autophagy pathway in K. phaffii. K. phaffii transformants, which express heterologous ß-galactosidase under FLD promoter, have been constructed.


Assuntos
Autofagia , Frutose-Bifosfatase/metabolismo , Metanol/metabolismo , Saccharomycetales/citologia , Saccharomycetales/enzimologia , Oxirredutases do Álcool/metabolismo , Citosol/enzimologia , Plasmídeos/metabolismo , Proteólise , beta-Galactosidase/metabolismo
14.
Cell Biol Int ; 45(3): 507-517, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31829471

RESUMO

Amid known microbial bioethanol producers, the yeast Scheffersomyces (Pichia) stipitis is particularly promising in terms of alcoholic fermentation of both glucose and xylose, the main constituents of lignocellulosic biomass hydrolysates. However, the ethanol yield and productivity, especially from xylose, are still insufficient to meet the requirements of a feasible industrial technology; therefore, the construction of more efficient S. stipitis ethanol producers is of great significance. The aim of this study was to isolate the insertional mutants of S. stipitis with altered ethanol production from glucose and xylose and to identify the disrupted gene(s). Mutants obtained by random insertional mutagenesis were screened for their growth abilities on solid media with different sugars and for resistance to 3-bromopyruvate. Of more than 1,300 screened mutants, 17 were identified to have significantly changed ethanol yields during the fermentation. In one of the best fermenting strains (strain 4.6), insertion was found to occur within the ORF of a homolog to the Saccharomyces cerevisiae gene HEM25 (YDL119C), encoding a mitochondrial glycine transporter required for heme synthesis. The role of HEM25 in heme accumulation, respiration, and alcoholic fermentation in the yeast S. stipitis was studied using strain 4.6, the complementation strain Comp-a derivative from the 4.6 strain with expression of the WT HEM25 allele and the deletion strain hem25Δ. As hem25Δ produced lower amounts of ethanol than strain 4.6, we assume that the phenotype of strain 4.6 may be caused not only by HEM25 disruption but additionally by some point mutation.


Assuntos
Etanol/metabolismo , Fermentação/genética , Genes Fúngicos , Glucose/metabolismo , Mutagênese Insercional/genética , Saccharomycetales/genética , Xilose/metabolismo , Aerobiose , Carbono/farmacologia , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Testes Genéticos , Heme/metabolismo , Mutação/genética , Piruvatos/metabolismo
15.
Yeast ; 37(9-10): 497-504, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32529692

RESUMO

Riboflavin or vitamin B2 is an essential dietary component for humans and animals that is the precursor of flavin coenzymes flavin mononucleotide and flavin adenine dinucleotide involved in numerous enzymatic reactions. The flavinogenic yeast Candida famata overproduces riboflavin under iron starvation; however, regulation of this process is poorly understood. Regulatory gene SEF1 encoding transcription activator has been identified. Its deletion blocks yeast ability to overproduce riboflavin under iron starvation. It was shown here that the SEF1 promoters from other flavinogenic (Candida albicans) and non-flavinogenic (Candida tropicalis) yeasts fused with the open reading frame (ORF) of SEF1 gene from C. famata are able to restore riboflavin oversynthesis in sef1Δ mutants. It is known that in the pathogenic flavinogenic yeast C. albicans, Sfu1 (GATA-type transcription factor) represses SEF1. Here, we found that deletion of SFU1 gene in wild-type C. famata leads to riboflavin oversynthesis. Moreover, it was shown that disruption of VMA1 gene (coding for vacuolar ATPase subunit A) also results in riboflavin oversynthesis in C. famata.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Riboflavina/biossíntese , Saccharomycetales/genética , Clonagem Molecular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Genes Reguladores/genética , Ferro/metabolismo , Proteínas Periplásmicas de Ligação/genética , ATPases Translocadoras de Prótons/genética , Riboflavina/metabolismo , Saccharomycetales/metabolismo , Fatores de Transcrição/genética
16.
Trends Biotechnol ; 38(8): 907-916, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32584768

RESUMO

Industrial production of glycerol by yeast, which began during WWI in the so-called Neuberg fermentation, was the first example of metabolic engineering. However, this process, based on bisulfite addition to fermentation liquid, has many drawbacks and was replaced by other methods of glycerol production. Osmotolerant yeasts and other microorganisms that do not require addition of bisulfite to steer cellular metabolism towards glycerol synthesis have been discovered or engineered. Because the glycerol market is expected to reach 5 billion US$ by 2024, microbial fermentation may again become a promising way to produce glycerol. This review summarizes some problems and perspectives on the production of glycerol by natural or engineered eukaryotic and prokaryotic microorganisms.


Assuntos
Metabolismo dos Carboidratos/genética , Glicerol/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Anaerobiose/genética , Etanol/química , Etanol/metabolismo , Fermentação , Glucose/genética , Glicerol/química , Humanos , Saccharomyces cerevisiae/metabolismo
17.
Yeast ; 37(9-10): 467-473, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32401376

RESUMO

Candida famata is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B2 ) in response to iron limitation. Overproduced riboflavin accumulates in the cultural medium rather than in the cells suggesting existence of the special mechanisms involved in riboflavin excretion. The corresponding protein and gene have not been identified in yeasts. At the same time, the corresponding gene BCRP has been identified in mammal mammary glands. Several homologs of the mammal BCRP gene encoding putative riboflavin efflux protein (excretase) were identified in Debaryomyces hansenii. The closest homolog was expressed under the control of D. hansenii TEF1 promoter in the riboflavin overproducing strain of C. famata. Resulted transformants overexpressed the corresponding gene and produced 1.4- to 1.8-fold more riboflavin as compared with the parental strain. They also were characterized by overexpression of RIB1 and RIB6 genes of riboflavin synthesis and exhibited elevated specific activity of GTP-cyclohydrolase II. Membrane localization of the riboflavin excretase was confirmed by fluorescent microscopy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Candida/genética , Proteínas Fúngicas/genética , Mamíferos/genética , Riboflavina/metabolismo , Animais , Candida/classificação , Clonagem Molecular , DNA Fúngico/genética , Riboflavina/biossíntese
18.
Microb Cell Fact ; 19(1): 96, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334587

RESUMO

BACKGROUND: Xylose transport is one of the bottlenecks in the conversion of lignocellulosic biomass to ethanol. Xylose consumption by the wild-type strains of xylose-utilizing yeasts occurs once glucose is depleted resulting in a long fermentation process and overall slow and incomplete conversion of sugars liberated from lignocellulosic hydrolysates. Therefore, the engineering of endogenous transporters for the facilitation of glucose-xylose co-consumption is an important prerequisite for efficient ethanol production from lignocellulosic hydrolysates. RESULTS: In this study, several engineering approaches formerly used for the low-affinity glucose transporters in Saccharomyces cerevisiae, were successfully applied for earlier identified transporter Hxt1 in Ogataea polymorpha to improve xylose consumption (engineering involved asparagine substitution to alanine at position 358 and replacement of N-terminal lysine residues predicted to be the target of ubiquitination for arginine residues). Moreover, the modified versions of S. cerevisiae Hxt7 and Gal2 transporters also led to improved xylose fermentation when expressed in O. polymorpha. CONCLUSIONS: The O. polymorpha strains with modified Hxt1 were characterized by simultaneous utilization of both glucose and xylose, in contrast to the wild-type and parental strain with elevated ethanol production from xylose. When the engineered Hxt1 transporter was introduced into constructed earlier advanced ethanol producer form xylose, the resulting strain showed further increase in ethanol accumulation during xylose fermentation. The overexpression of heterologous S. cerevisiae Gal2 had a less profound positive effects on sugars uptake rate, while overexpression of Hxt7 revealed the least impact on sugars consumption.


Assuntos
Fermentação , Proteínas Fúngicas/metabolismo , Temperatura Alta , Pichia/metabolismo , Engenharia de Proteínas , Xilose/metabolismo , Álcoois/química , Álcoois/metabolismo , Proteínas Fúngicas/química , Pichia/química , Xilose/química
19.
Cell Biol Int ; 44(8): 1606-1615, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32227552

RESUMO

Xylose is a second-most abounded sugar after glucose in lignocellulosic hydrolysates and should be efficiently fermented for economically viable second-generation ethanol production. Despite significant progress in metabolic and evolutionary engineering, xylose fermentation rate of recombinant Saccharomyces cerevisiae remains lower than that for glucose. Our recent study demonstrated that peroxisome-deficient cells of yeast Ogataea polymorpha showed a decrease in ethanol production from xylose. In this work, we have studied the role of peroxisomes in xylose alcoholic fermentation in the engineered xylose-utilizing strain of S. cerevisiae. It was shown that peroxisome-less pex3Δ mutant possessed 1.5-fold decrease of ethanol production from xylose. We hypothesized that peroxisomal catalase Cta1 may have importance for hydrogen peroxide, the important component of reactive oxygen species, detoxification during xylose alcoholic fermentation. It was clearly shown that CTA1 deletion impaired ethanol production from xylose. It was found that enhancing the peroxisome population by modulation the peroxisomal biogenesis by overexpression of PEX34 activates xylose alcoholic fermentation.


Assuntos
Fermentação , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Biomassa , Catalase/genética , Etanol/metabolismo , Deleção de Genes , Engenharia Genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxinas/genética , Peroxinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Yeast ; 37(9-10): 505-513, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32307750

RESUMO

Nonconventional yeast Candida famata and Ogataea polymorpha are interesting organisms for basic and applied studies. O. polymorpha is methylotrophic thermotolerant yeast capable of xylose alcoholic fermentation whereas C. famata is capable of riboflavin overproduction. Still, the new tools for molecular research of these species are needed. The aim of this study was to develop the new dominant selective markers for C. famata and O. polymorpha usable in metabolic engineering experiments. In this work, the BSD gene from Aspergillus terreus coding for blasticidin S deaminase, O. polymorpha AUR1 gene required for sphingolipid synthesis and IMH3 gene, which encodes IMP dehydrogenase, were tested as the new dominant selective marker genes. Our results showed that AUR1 and IMH3 genes could be used as dominant selective markers for O. polymorpha with frequencies of transformation of 40 and 20 transformants per microgram of DNA, respectively. The IMH3 gene was successfully used as the marker for construction of O. polymorpha strains with increased ethanol production from xylose due to overexpression of TAL1, TKL1 and AOX1 genes. The BSD gene from A. terreus, conferring resistance to blasticidin, was found to be efficient for selection of C. famata transformants.


Assuntos
Aspergillus/genética , Candida/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Engenharia Metabólica/métodos , Saccharomycetales/genética , Etanol/metabolismo , Marcadores Genéticos , Transformação Genética , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...