Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 78(2): 023105, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17578101

RESUMO

Time scales of long-range physical processes in solids are typically in the range of picoseconds to nanoseconds. These times are commensurate with the time resolution of structural probes based on modern synchrotron x-ray sources. Several processes of technological and scientific interest can be driven by applied electric fields, but synchronizing electrically driven phenomena with an x-ray probe poses a technical challenge. We describe the synchronization of a well-defined number of fast electrical pulses with the time structure of synchrotron x rays to probe the dynamics of thin films and nanostructures. This synchronization technique yields x-ray transient signals with 600 ps transitions in ferroelectric thin films, with a contribution of approximately 320 ps due to timing jitter in the synchronization.

2.
Phys Rev Lett ; 96(18): 187601, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16712395

RESUMO

Domain wall motion during polarization switching in ferroelectric thin films is fundamentally important and poses challenges for both experiments and modeling. We have visualized the switching of a Pb(Zr, Ti)O(3) capacitor using time-resolved x-ray microdiffraction. The structural signatures of switching include a reversal in the sign of the piezoelectric coefficient and a change in the intensity of x-ray reflections. The propagation of polarization domain walls is highly reproducible from cycle to cycle of the electric field. Domain wall velocities of 40 m s(-1) are consistent with the results of other methods, but are far less than saturation values expected at high electric fields.

3.
Nat Mater ; 3(6): 365-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15156197

RESUMO

Ferroelectric oxides, such as Pb(Zr,Ti)O(3), are useful for electronic and photonic devices because of their ability to retain two stable polarization states, which can form the basis for memory and logic circuitry. Requirements for long-term operation of practical devices such as non-volatile RAM (random access memory) include consistent polarization switching over many (more than 10(12)) cycles of the applied electric field, which represents a major challenge. As switching is largely controlled by the motion and pinning of domain walls, it is necessary to develop suitable tools that can directly probe the ferroelectric domain structures in operating devices-thin-film structures with electrical contacts. A recently developed synchrotron X-ray microdiffraction technique complements existing microscopic probes, and allows us to visualize directly the evolution of polarization domains in ferroelectric devices, through metal or oxide electrodes, and with submicrometre spatial resolution. The images reveal two regimes of fatigue, depending on the magnitude of the electric field pulses driving the device: a low-field regime in which fatigue can be reversed with higher electric field pulses, and a regime at very high electric fields in which there is a non-reversible crystallographic relaxation of the epitaxial ferroelectric film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...