Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 21(45): 15919-23, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26387978

RESUMO

Novel steric bulky hole transporting materials (HTMs) with two or four N,N-di(4-methoxyphenyl)aminophenyl units have been synthesized. When the EtheneTTPA was used as a hole transporting material in perovskite solar cell, the power conversion efficiency afforded 12.77 % under AM 1.5 G illumination, which is comparable to the widely used spiro-OMeTAD based solar cell (13.28 %).

2.
Chem Commun (Camb) ; 50(75): 10971-4, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25093945

RESUMO

Novel star-shaped hole transporting materials with a triazine unit have been synthesized. When the new Triazine-Th-OMeTPA was used as a hole transporting material in perovskite solar cells, the power conversion efficiency reached 12.51% under AM 1.5 G (100 mW cm(-2)) illumination, showing competitive photovoltaic performance with the widely used spiro-OMeTAD based solar cell (13.45%).

3.
Org Lett ; 14(1): 222-5, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22188378

RESUMO

A new type of organic sensitizers incorporating a planar amine unit have been synthesized and demonstrated to be a highly efficient sensitizers, showing evidence of lateral interactions on the TiO(2) surface. Under standard global air mass 1.5 solar conditions, the JK-98 sensitized cell gave a short circuit photocurrent density (J(sc)) of 16.78 mA cm(-2), an open-circuit voltage (V(oc)) of 0.745 V, and a fill factor (ff) of 0.70, corresponding to an overall conversion efficiency (η) of 8.71%.

4.
ACS Appl Mater Interfaces ; 4(1): 375-81, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22132833

RESUMO

CdS quantum dot sensitized solar cells based on TiO(2) photoanode and nanostructured carbon as well as Pt as counter electrodes using iodide/triiodide and polysulfide electrolytes were fabricated to improve the efficiency and reduce the cost of solar cells. Compared with conventional Pt (η = 1.05%) and CMK-3 (η = 0.67%) counter electrodes, hollow core-mesoporous shell carbon (HCMSC) counter electrode using polysulfide electrolyte exhibits much larger incident photon to current conversion efficiency (IPCE = 27%), photocurrent density (J(sc) = 4.31 mA.cm(-2)) and power conversion efficiency (η = 1.08%), which is basically due to superb structural characters of HCMSC such as large specific surface area, high mesoporous volume, and 3D interconnected well-developed hierarchical porosity network, which facilitate fast mass transfer with less resistance and enable HCMSC to have highly enhanced catalytic activity toward the reduction of electrolyte shuttle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...