Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Int J Biol Macromol ; 264(Pt 2): 130617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447829

RESUMO

Local antibiotic application might mitigate the burgeoning problem of rapid emergence of antibiotic resistance in pathogenic microbes. To accomplish this, delivery systems must be engineered. Hydrogels have a wide range of physicochemical properties and can mimic the extracellular matrix, rendering them promising materials for local antibacterial agent application. Here, we synthesized antibacterial silicon (Si)-based nickel (Ni) nanoflowers (Si@Ni) and encapsulated them in gelatin methacryloyl (GelMA) using microfluidic and photo-crosslink technology, constructing uniform micro-sized hydrogel spheres (Si@Ni-GelMA). Si@Ni and Si@Ni-GelMA were characterized using X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Injectable Si@Ni-GelMA exhibited excellent antibacterial activities owing to the antibiotic effect of Ni against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus, while showing negligible cytotoxicity. Therefore, the Si@Ni-GelMA system can be used as drug carriers owing to their injectability, visible light-mediated crosslinking, degradation, biosafety, and superior antibacterial properties.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Gelatina/química , Materiais Biocompatíveis/química , Silício , Níquel , Microesferas , Hidrogéis/química , Antibacterianos/farmacologia , Metacrilatos/química , Engenharia Tecidual
2.
Nanoscale Adv ; 5(19): 5165-5213, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37767032

RESUMO

In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.

3.
Int J Biol Macromol ; 242(Pt 1): 124840, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169053

RESUMO

Metal-organic frameworks (MOFs) containing bioactive metals have the potential to exhibit antimicrobial activity by releasing metal ions or ligands through the cleavage of metal-ligand bonds. Recently, copper-based MOFs (Cu-MOFs) with sustained release capability, porosity, and structural flexibility have shown promising antimicrobial properties. However, for clinical use, the controlled release of Cu2+ over an extended time period is crucial to prevent toxicity. In this study, we developed an alginate-based antimicrobial scaffold and encapsulated MOFs within a dual-crosslinked alginate polymer network. We synthesized Cu-MOFs containing glutarate (Glu) and 4,4'-azopyridine (AZPY) (Cu(AZPY)-MOF) and encapsulated them in an alginate-based hydrogel through a combination of visible light-induced photo and calcium ion-induced chemical crosslinking processes. We confirmed Cu(AZPY)-MOF synthesis using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, and thermogravimetric analysis. This antimicrobial hydrogel demonstrated excellent antibacterial and antifungal properties against two bacterial strains (MRSA and S. mutans, with >99.9 % antibacterial rate) and one fungal strain (C. albicans, with >78.7 % antifungal rate) as well as negligible cytotoxicity towards mouse embryonic fibroblasts, making it a promising candidate for various tissue engineering applications in biomedical fields.


Assuntos
Cobre , Estruturas Metalorgânicas , Animais , Camundongos , Cobre/química , Estruturas Metalorgânicas/farmacologia , Alginatos/química , Hidrogéis/química , Antifúngicos , Fibroblastos , Antibacterianos/farmacologia , Antibacterianos/química , Metais
4.
J Mater Chem B ; 11(23): 5142-5150, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37248783

RESUMO

Silver nanoparticles (AgNPs) continue to be applied to agricultural and medical applications because of their antibacterial and antifungal effects. However, AgNPs are vulnerable to poisoning by oxidation or sulfidation, and unintentional toxicity can occur via leaching. Therefore, ensuring the stability of AgNPs for practical applications is considered an important requirement. In this study, we propose the solvothermal galvanic replacement of a Te nanorod (TeNR) template with a Ag precursor to manufacture highly stable and biocompatible Ag-Te nanoparticles (AgTeNPs). In addition to their high stability, AgTeNPs composed of Ag2Te-Ag4.53Te3 were evaluated as a nanotherapeutic agent enabled by their selective toxicity through metabolic degradation in breast cancer cells. It has been demonstrated that combinatorial treatment with hyperthermic cancer-cell ablation through photothermal conversion provides an effective cancer treatment in vitro and in vivo. The discovered new biocompatible Ag nanomaterials with innate anticancer effects are expected to be applied to various application fields.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias de Mama Triplo Negativas , Humanos , Prata/farmacologia , Oxirredução
5.
ACS Appl Mater Interfaces ; 15(3): 4559-4568, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36633438

RESUMO

In this study, a sponge-like poly(vinylidene fluoride) (PVDF)/lithium chloride (LiCl) nanocomposite-entrenched interdigitated capacitive (IDC) sensor was developed for real-time humidity-sensing applications. Here, we demonstrated a sponge-like nanoporous structure ranging from 200 nm to 2 µm size holes, the PVDF/LiCl structure fabricated on an interdigitated capacitor (IDC) electrode functioning as a high-performance sensor because of the presence of ionized LiCl. The nanoporous PVDF/LiCl composite-based humidity sensor exhibited a high sensitivity of 12.6 nF/% relative humidity (RH), a linearity of 0.990, and a low hysteresis of 2.6% in the range of 25-95% RH. The composite film exhibited a response time of 17.7 s, a recovery time of 21 s, and an intensified increase of 8.02 nF/s (a decrease of 6.7 nF/s). The sensor designed demonstrates ultra-high sensing characteristics with 10 times higher sensitivity, i.e., 12.678.96 pF/%RH as compared to other polymer-based composite humidity sensors. Owing to the sensing performance and portability, the proposed nanoporous PVDF/LiCl composite-based IDC sensor is expected to be a promising platform for a wide range of humidity-sensing applications, including real-time breath monitoring and non-contact sensing.

6.
Front Public Health ; 10: 973362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159240

RESUMO

Background: Tuberculosis has caused significant public health and economic burdens in Vietnam over the years. The Vietnam National Tuberculosis Program is facing considerable challenges in its goal to eliminate tuberculosis by 2030, with the COVID-19 pandemic having negatively impacted routine tuberculosis services at all administrative levels. While the turnaround time of tuberculosis infection may delay disease detection, high transportation frequency could potentially mislead epidemiological studies. This study was conducted to develop an online geospatial platform to support healthcare workers in performing data visualization and promoting the active case surveillance in community as well as predicting the TB incidence in space and time. Method: This geospatial platform was developed using tuberculosis notification data managed by The Vietnam National Tuberculosis Program. The platform allows case distribution to be visualized by administrative level and time. Users can retrieve epidemiological measurements from the platform, which are calculated and visualized both temporally and spatially. The prediction model was developed to predict the TB incidence in space and time. Results: An online geospatial platform was developed, which presented the prediction model providing estimates of case detection. There were 400,370 TB cases with bacterial evidence to be included in the study. We estimated that the prevalence of TB in Vietnam was at 414.67 cases per 100.000 population. Ha Noi, Da Nang, and Ho Chi Minh City were predicted as three likely epidemiological hotspots in the near future. Conclusion: Our findings indicate that increased efforts should be undertaken to control tuberculosis transmission in these hotspots.


Assuntos
COVID-19 , Tuberculose , COVID-19/epidemiologia , Cidades , Humanos , Incidência , Pandemias , Tuberculose/diagnóstico , Tuberculose/epidemiologia
7.
Pharmaceutics ; 14(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145635

RESUMO

Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.

8.
ACS Appl Bio Mater ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36041482

RESUMO

Metal-organic frameworks (MOFs) are potential exogenous scaffolds for therapeutic nitric oxide (NO) delivery because they can store drug or bioactive gas molecules within pores or on active metal sites. Herein, we employed a Cu-MOF coordinated with glutarate (glu) and 1,2-bis(4-pyridyl)ethane (bpa) to obtain NO-loaded Cu-MOF (NO⊂Cu-MOF). NO loading transformed the space group of Cu-MOF from monoclinic C2/c to triclinic P-1 through nonclassical hydrogen bonding with glu and bpa. Cu-MOF showed good stability in deionized water and phosphate-buffered saline. NO⊂Cu-MOF released up to 1.10 µmol mg-1 NO over 14.6 h at 37 °C, which is suitable for therapeutic applications. NO⊂Cu-MOF showed moderate biocompatibility with L-929 cells and significant anticancer activity against HeLa cells, suggesting an apoptosis-mediated cell death mechanism. These insights into NO bonding modes with Cu-MOF that enable controlled NO release can inspire the design of functional MOFs as hybrid NO donors for drug delivery.

9.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012363

RESUMO

Crystalline metal-organic frameworks (MOFs) are extensively used in areas such as gas storage and small-molecule drug delivery. Although Cu-BTC (1, MOF-199, BTC: benzene-1,3,5-tricarboxylate) has versatile applications, its NO storage and release characteristics are not amenable to therapeutic usage. In this work, micro-sized Cu-BTC was prepared solvothermally and then processed by ball-milling to prepare nano-sized Cu-BTC (2). The NO storage and release properties of the micro- and nano-sized Cu-BTC MOFs were morphology dependent. Control of the hydration degree and morphology of the NO delivery vehicle improved the NO release characteristics significantly. In particular, the nano-sized NO-loaded Cu-BTC (NO⊂nano-Cu-BTC, 4) released NO at 1.81 µmol·mg-1 in 1.2 h in PBS, which meets the requirements for clinical usage. The solid-state structural formula of NO⊂Cu-BTC was successfully determined to be [CuC6H2O5]·(NO)0.167 through single-crystal X-ray diffraction, suggesting no structural changes in Cu-BTC upon the intercalation of 0.167 equivalents of NO within the pores of Cu-BTC after NO loading. The structure of Cu-BTC was also stably maintained after NO release. NO⊂Cu-BTC exhibited significant antibacterial activity against six bacterial strains, including Gram-negative and positive bacteria. NO⊂Cu-BTC could be utilized as a hybrid NO donor to explore the synergistic effects of the known antibacterial properties of Cu-BTC.


Assuntos
Cobre , Óxido Nítrico , Antibacterianos/farmacologia , Benzeno , Cobre/química , Ácidos Tricarboxílicos
10.
Int J Biol Macromol ; 208: 149-158, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35304194

RESUMO

Bacterial infections have become a severe threat to human health and antibiotics have been developed to treat them. However, extensive use of antibiotics has led to multidrug-resistant bacteria and reduction of their therapeutic effects. An efficient solution may be localized application of antibiotics using a drug delivery system. For clinical application, they need to be biodegradable and should offer a prolonged antibacterial effect. In this study, a new injectable and visible-light-crosslinked hyaluronic acid (HA) hydrogel loaded with silicon (Si)-based nickel oxide (NiO) nanoflowers (Si@NiO) as an antibacterial scaffold was developed. Si@NiO nanoflowers were synthesized using chemical bath deposition before encapsulating them in the HA hydrogel under a mild visible-light-crosslinking conditions to generate a Si@NiO-hydrogel. Si@NiO synthesis was confirmed using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. As-prepared Si@NiO-hydrogel exhibited enhanced mechanical properties compared to a control bare hydrogel sample. Moreover, Si@NiO-hydrogel exhibits excellent antibacterial properties against three bacterial strains (P. aeruginosa, K. pneumoniae, and methicillin-resistant Staphylococcus aureus (>99.9% bactericidal rate)) and negligible cytotoxicity toward mouse embryonic fibroblasts. Therefore, Si@NiO-hydrogel has the potential for use in tissue engineering and biomedical applications owing to its injectability, visible-light crosslink ability, degradability, biosafety, and superior antibacterial property.


Assuntos
Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Fibroblastos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Luz , Camundongos , Níquel , Pseudomonas aeruginosa , Silício , Dióxido de Silício
11.
Pharmaceutics ; 14(2)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35214001

RESUMO

Compared to most of nano-sized particles, core-shell-structured nanoflowers have received great attention as bioactive materials because of their high surface area with the flower-like structures. In this study, core-shell-structured Si-based NiO nanoflowers, Si@NiO, were prepared by a modified chemical bath deposition method followed by thermal reduction. The crystal morphology and basic structure of the composites were characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and porosity analysis (BJT), and inductively coupled plasma optical emission spectrometry (ICP-OES). The electrochemical properties of the Si@NiO nanoflowers were examined through the redox reaction of ascorbic acid with the metal ions present on the surface of the core-shell nanoflowers. This reaction favored the formation of reactive oxygen species. The Si@NiO nanoflowers showed excellent anticancer activity and low cytotoxicity toward the human breast cancer cell line (MCF-7) and mouse embryonic fibroblasts (MEFs), respectively, demonstrating that the anticancer activities of the Si@NiO nanoflowers were primarily derived from the oxidative capacity of the metal ions on the surface, rather than from the released metal ions. Thus, this proves that Si-based NiO nanoflowers can act as a promising candidate for therapeutic applications.

12.
Pharmaceutics ; 14(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35214110

RESUMO

Effective penetration into cells, or binding to cell membranes is an essential property of an effective nanoparticle drug delivery system (DDS). Nanoparticles are generally internalized through active transport mechanisms such as apoptosis, and cargo can be released directly into the cytoplasm. A metal-organic framework (MOF) is a network structure consisting of metal clusters connected by organic linkers with high porosity; MOFs provide a desirable combination of structural features that can be adjusted with large cargo payloads, along with Cu, Co, and Zn-MOFs, which have the chemical stability required for water-soluble use. Bioactive MOFs containing copper, cobalt, and zinc were prepared by modifying previous methods as therapeutic drugs. Their structures were characterized via PXRD, single-crystal crystallographic analysis, and FT-IR. The degradability of MOFs was measured in media such as deionized water or DPBS by PXRD, SEM, and ICP-MS. Furthermore, we investigated the anticancer activity of MOFs against the cell lines SKOV3, U87MG, and LN229, as well as their biocompatibility with normal fibroblast cells. The results show that a nanoporous 3D Cu-MOF could potentially be a promising candidate for chemoprevention and chemotherapy.

13.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948419

RESUMO

Polyurethane foams (PUFs) have attracted attention as biomaterials because of their low adhesion to the wound area and suitability as biodegradable or bioactive materials. The composition of the building blocks for PUFs can be controlled with additives, which provide excellent anti-drug resistance and biocompatibility. Herein, nanosized Cu-BTC (copper(II)-benzene-1,3,5-tricarboxylate) was incorporated into a PUF via the crosslinking reaction of castor oil and chitosan with toluene-2,4-diisocyanate, to enhance therapeutic efficiency through the modification of the surface of PUF. The physical and thermal properties of the nanosized Cu-BTC-incorporated PUF (PUF@Cu-BTC), e.g., swelling ratio, phase transition, thermal gravity loss, and cell morphology, were compared with those of the control PUF. The bactericidal activities of PUF@Cu-BTC and control PUF were evaluated against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus. PUF@Cu-BTC exhibited selective and significant antibacterial activity toward the tested bacteria and lower cytotoxicity for mouse embryonic fibroblasts compared with the control PUF at a dose of 2 mg mL-1. The Cu(II) ions release test showed that PUF@Cu-BTC was stable in phosphate buffered saline (PBS) for 24 h. The selective bactericidal activity and low cytotoxicity of PUF@Cu-BTC ensure it is a candidate for therapeutic applications for the drug delivery, treatment of skin disease, and wound healing.


Assuntos
Antibacterianos/administração & dosagem , Materiais Biocompatíveis/química , Cobre/administração & dosagem , Estruturas Metalorgânicas/administração & dosagem , Poliuretanos/química , Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Cobre/farmacologia , Portadores de Fármacos/química , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/prevenção & controle , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos
14.
Healthcare (Basel) ; 9(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208084

RESUMO

Adopting a cross-sectional study design, we aimed to examine the prevalence of psychological problems in different healthcare workers during the COVID-19 pandemic in the hospitals in these COVID-19 hotspots (Da Nang city and Quang Nam province) and to explore the socioeconomic and COVID-19 control-related factors that are associated with various psychological problems. A total of 611 healthcare workers were included in the final analysis from 1 August 2020 to 31 August 2020. The prevalence of anxiety, depression, insomnia, and overall psychological problems was 26.84%, 34.70%, 34.53%, and 46.48%, respectively. The prevalence rates of anxiety were approximately equal amongst the groups of healthcare workers, and moderate-to-severe anxiety was the most common in physicians (11.11%). The prevalence of depression was the highest in nurses (38.65%) and moderate-to-severe depression was mainly found in physicians (11.81%). The prevalence rates of insomnia were 34.03% in physicians, 36.20% in nurses, and 31.21% in technicians; in particular, the rate of moderate-to-severe insomnia was higher in physicians and nurses compared to technicians. The prevalence of overall moderate-to-severe psychological problems was the highest among physicians (14.58%), followed by nurses (12.58%) and technicians (9.22%). Statistically significant associated factors of current psychological problems were the occupations of physicians or nurses, less than 1 year of experience, university education, living with 4-5 people, reporting 1000-5000 m distance between home and workplace, participating in the COVID-19 control for less than 1 week, being under social isolation at home, being affected a lot by the community, reporting inadequate equipment in current workplace conditions, frequently working in the department directly in contact with the COVID-19 patients, and feeling anxious, stressed, or sad about current works. Present findings can provide valuable evidence for the policymakers and managers to adopt supportive, encouraging, motivational, protective, training, and educational interventions into healthcare workforce in other parts of Vietnam.

15.
Materials (Basel) ; 14(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34300897

RESUMO

In the present study, the thermal stability and crystallization behavior of mechanical alloyed metallic glassy Al82Fe16Ti2, Al82Fe16Ni2, and Al82Fe16Cu2 were investigated. The microstructure of the milled powders was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The results showed remarkable distinction in thermal stability of the alloys by varying only two atomic percentages of transition elements. Among them, Al82Fe16Ti2 alloy shows the highest thermal stability compared to the others. In the crystallization process, exothermal peaks corresponding to precipitation of fcc-Al and intermetallic phases from amorphous matrix were observed.

16.
Front Surg ; 8: 693562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195225

RESUMO

Background: Little is known about video-assisted thoracoscopic surgery in the Nuss procedure (VATS-NUSS) and its postoperative outcomes in the resource-scarce conditions in clinical practice such as Vietnam. Available evidence in the literature was mostly reported from large institutions in developed countries. Hence, this study was conducted to review our initial large single-center experience in the use of the VATS-NUSS for patients with pectus excavatum (PE) within 5 years. Methods: Data from 365 consecutive PE patients between January 2015 and December 2019 who were surgically treated with VATS-NUSS were retrospectively analyzed. Results: Of 365 patients, median age at operation was 15.61 ± 3.73 years (range = 5-27 years), most being child and adolescent. Three hundred nine patients (84.65%) were male. PE was commonly detected at puberty (n = 328, 89.9%). Postoperatively, early complications consisted of pneumothorax (n = 5, 1.37%), pleural bleeding/pleural fluid (n = 2, 0.55%), pleural hematoma (n = 1, 0.27%), pneumonia (n = 1, 0.27%), surgical wound infection (n = 1, 0.27%), incision fluid accumulation (n = 3, 0.82%), metal bar infection (n = 1, 0.27%), atelectasis (n = 3, 0.82%), and fever (n = 8, 2.19%). Late complications included surgical wound infection (n = 2, 0.55%), metal bar deviation (n = 5, 1.37%), metal bar allergy (n = 10, 2.74%), recurrent PE (n = 2, 0.55%), and persistent PE (n = 5, 1.37%). No deaths occurred. In 175 patients (47.95%) experiencing bar removal, mean operative time for bar removal was 34.09 ± 10.61 min, and the length of hospitalization following bar removal was 2.4 ± 1.34 days; the most frequent complication was pneumothorax (n = 19, 10.85%). One wound infection and one incision fluid accumulation happened following bar removal. Favorable midterm to long-term postoperative outcomes were achieved. Conclusions: From the beginning of the Vietnamese surgeons' experience, VATS-NUSS application obtained favorable outcomes with minimizing the occurrence of serious intraoperative and postoperative complications. Current rare evidence enables to give a real picture in the application, modification, and development of VATS-NUSS in the countries having similar resource-scarce conditions.

17.
Nanomaterials (Basel) ; 11(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809285

RESUMO

Polysiloxanes (PSs) have been widely utilized in the industry as lubricants, varnishes, paints, release agents, adhesives, and insulators. In addition, their applications have been expanded to include the development of new biomedical materials. To modify PS for application in therapeutic purposes, a flexible antibacterial Cu-MOF (metal-organic framework) consisting of glutarate and 1,2-bis(4-pyridyl)ethane ligands was embedded in PS via a hydrosilylation reaction of vinyl-terminated and H-terminated PSs at 25 °C. The bactericidal activities of the resulting Cu-MOF-embedded PS (PS@Cu-MOF) and the control polymer (PS) were tested against Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus. PS@Cu-MOF exhibited more than 80% bactericidal activity toward the tested bacteria at a concentration of 100 µg⋅mL-1 and exhibited a negligible cytotoxicity toward mouse embryonic fibroblasts at the same concentration. Release tests of the Cu(II) ion showed PS@Cu-MOF to be particularly stable in a phosphate-buffered saline solution. Furthermore, its physical and thermal properties, including the phase transition, rheological measurements, swelling ratio, and thermogravimetric profile loss, were similar to those of the control polymer. Moreover, the low cytotoxicity and bactericidal activities of PS@Cu-MOF render it a promising candidate for use in medicinal applications, such as in implants, skin-disease treatment, wound healing, and drug delivery.

18.
J Nanosci Nanotechnol ; 21(8): 4400-4405, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714334

RESUMO

Carbon monoxide (CO) is an odorless, colorless, tasteless, extremely flammable, and highly toxic gas. It is produced when there is insufficient oxygen supply during the combustion of carbon to produce carbon dioxide (CO2). CO is produced from operating engines, stoves, or furnaces. CO poisoning occurs when CO accumulates in the bloodstream and can result in severe tissue damage or even death. Many types of CO sensors have been reported, including electrochemical, semiconductor metal-oxide, catalytic combustion, thermal conductivity, and infrared absorption-type for the detection of CO. However, despite their excellent selectivity and sensitivity, issues such as complexity, power consumption, and calibration limit their applications. In this study, a fabricbased colorimetric CO sensor is proposed to address these issues. Potassium disulfitopalladate (II) (K2Pd(SO3)2) is dyed on a polyester fabric as a sensing material for selective CO detection. The sensing characteristics and performance are investigated using optical instruments such as RGB sensor and spectrometer. The sensor shows immediate color change when exposed to CO at a concentration that is even lower than 20 ppm before 2 min. The fast response time of the sensor is attributed to its high porosity to react with CO. This easy-to-fabricate and cost-effective sensor can detect and prevent the leakage of CO simultaneously with high sensitivity and selectivity toward CO.

19.
Nat Neurosci ; 24(4): 504-515, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33723433

RESUMO

The basal ganglia regulate a wide range of behaviors, including motor control and cognitive functions, and are profoundly affected in Parkinson's disease (PD). However, the functional organization of different basal ganglia nuclei has not been fully elucidated at the circuit level. In this study, we investigated the functional roles of distinct parvalbumin-expressing neuronal populations in the external globus pallidus (GPe-PV) and their contributions to different PD-related behaviors. We demonstrate that substantia nigra pars reticulata (SNr)-projecting GPe-PV neurons and parafascicular thalamus (PF)-projecting GPe-PV neurons are associated with locomotion and reversal learning, respectively. In a mouse model of PD, we found that selective manipulation of the SNr-projecting GPe-PV neurons alleviated locomotor deficit, whereas manipulation of the PF-projecting GPe-PV neurons rescued the impaired reversal learning. Our findings establish the behavioral importance of two distinct GPe-PV neuronal populations and, thereby, provide a new framework for understanding the circuit basis of different behavioral deficits in the Parkinsonian state.


Assuntos
Globo Pálido/fisiopatologia , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Animais , Feminino , Transtornos Neurológicos da Marcha/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas , Reversão de Aprendizagem/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...